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What do fund flows reveal about asset pricing models and investor sophistication? 

Recent literature uses the relative strength of the relation between fund flows and alphas 

with respect to various multifactor models to draw inferences about the best asset pricing model 

and about investor sophistication. This paper analytically shows that such inferences are tenable 

only under certain assumptions and we test their empirical validity. Our results indicate that any 

inference about the true asset pricing model based on alpha-flow relations is empirically untenable. 

The literature uses a multifactor model that includes all factors as the benchmark to assess investor 

sophistication. We show that the appropriate benchmark excludes some factors when their betas 

are estimated from the data, but even with this benchmark the rejection of investor sophistication 

in the literature is empirically tenable. 
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An extensive literature documents that net fund flows into mutual funds are driven by 

funds’ past performance. For example, Patel, Zeckhauser, and Hendricks (1994) document that 

equity mutual funds with bigger returns attract more cash inflows and they offer various behavioral 

explanations for this phenomenon. Other papers that document a positive relation between fund 

flows and past performance include Ippolito (1992), Chevalier and Ellison (1997), and Sirri and 

Tufano (1998).   

Some papers in the early literature also examine whether abnormal performance (or alphas) 

measured with respect to some benchmarks better predict fund flows than others. For example, 

Gruber (1996) compares the mutual fund flow-performance relation for alphas measured with 

respect to one- and four-factor models, while Del Guercio and Tkac (2002) compares sensitivity 

of flows to raw returns vis-à-vis alphas from market model in mutual funds and pension funds. 

Fung et. al. (2008) makes similar comparisons with a different set of factor models for a sample 

of hedge funds.  

While comparison of flow-alpha relations across models was not the primary focus of 

earlier papers, recent papers in this area have shown a renewed interest in such comparisons using 

a broader range of asset pricing and factor models. The primary driving force for this resurgence 

is the argument that these comparisons can potentially help us answer important economic 

questions that extend beyond a descriptive analysis of mutual fund flows. For example, Barber, 

Huang and Odean (2016) (hereafter “BHO”) compare the relation between fund flows and alphas 

measured with respect to various models to evaluate mutual fund investors’ sophistication. They 

argue that sophisticated investors should use all common factors to compute alphas and evaluate 

fund performance regardless of the underlying true asset pricing model. BHO find that fund flows 

are more highly correlated with market model alphas than with other alphas.  Because investors 

do not seem to be using alphas with respect to a model that includes all common factors, BHO 

conclude that investors in aggregate are not sophisticated in how they use past returns to assess 

fund performance.  

Berk and van Binsbergen (2016) (hereafter “BvB”) argue that such comparisons serve as a 

new and fundamentally different test of asset pricing models and that the results can determine 

which asset pricing model is the closest to the true asset pricing model in the economy. Because 

of the asset pricing model implications, they include several versions of equilibrium consumption-
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CAPM as well in their comparisons. Agarwal, Green and Ren (2017) and Blocher and Molyboga 

(2017) carry out similar tests with samples of hedge funds.  

BvB find that fund flows are most highly correlated with alphas computed with a market 

model in their tests as well. They conclude that therefore the CAPM “is still the best method to 

use to compute the cost of capital of an investment opportunity.” Berk and van Binsbergen (2017) 

also prescribe that practitioners should use the CAPM to make capital budgeting decisions based 

on this evidence. The true asset pricing model has been a holy grail of the finance literature and 

BvB’s conclusions potentially have broad implications that go well beyond just the mutual fund 

literature.  

The far reaching inferences drawn in the recent literature based on comparisons of flow-

alpha relations stand in contrast with the much more limited inferences drawn in the early 

literature. A natural question that arises is, under what assumptions can one draw reliable 

inferences about asset pricing models or about investor sophistication based on these results? Are 

the inferences about asset pricing models and investor sophistication in the recent literature 

empirically tenable?  

 We address these questions in this paper. We analytically show that one can draw reliable 

inferences about the true asset pricing model based on flow-alpha relations only if certain critically 

important assumptions are valid, and their validity can only be empirically determined. For 

example, it is possible that in some situations CAPM may not be true but investors may still 

optimally use the market model to estimate alphas. Also, in some other situations, it is possible 

that CAPM may be true but investors may optimally use a multifactor model to estimate alphas. 

There are also situations where investors may optimally use the market model to estimate alpha 

when CAPM is true, which would justify inferences about asset pricing model. Therefore, one 

cannot identify the true asset pricing model solely based on flow-alpha comparison without further 

tests to determine which of these multiple possibilities are true in the data.  

We find similar issues with drawing inferences about investor sophistication as well. 

Sophisticated investors would use the model that yields the most precise alpha estimates. We show 

that the optimal model depends on the following factors: the underlying true asset pricing model, 

the incremental explanatory power of each factor in a multifactor model, the dispersion of factor 

betas across funds and the potential error in estimating factor betas. Our results indicate that this 
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optimal model need not be the true asset pricing model, nor does it need to use all common factors 

to estimate betas. Therefore, the optimal model can only be empirically identified and we need the 

identity of this model to draw reliable inferences about investor sophistication based on flow-alpha 

relations.  

We empirically assess whether inferences about asset pricing models and investor 

sophistication based on flow-alpha relations are tenable. Our tests estimate the relevant parameters 

from the data and run simulation experiments under various “true” asset pricing models. These 

tests enable us to determine the multifactor model that provides the most precise estimator of 

alphas in the data and assess the tenability of the inferences about asset pricing and investor 

sophistication in the literature. 

 

1. Fund flows and alphas: Foundation for empirical tests and inferences 

 This section presents a model that forms the basis for our analysis of the implications of flow-

alpha relations for asset pricing models and tests of investor sophistication. Broadly, we use the 

model to answer the following questions: 

(a) How do investors optimally update their priors about the skills of fund managers when they 

observe fund returns each period? 

(b) How are equilibrium fund flows related to the information investors use to update their 

priors? 

(c) What are the implications of the answers to the above questions for interpreting the results 

of an alpha-fund flow horse race with alphas computed using different multifactor models?  

 We answer these questions using the Berk and Green (2004) model augmented with a 

multifactor return generating process and an equilibrium asset pricing model that we describe in 

the next subsection.  

1.1 Return generating process and asset pricing model 

 The following K-factor model is the true asset pricing model: 

𝐸[𝑟𝑖] = ∑𝛽𝑘,𝑖𝛾𝑘

𝐾

𝑘=1

, (1) 
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where 𝑟𝑖 is the return in excess of the risk-free rate, or excess returns, 𝐸[𝑟𝑖] is the expected excess 

return on asset i, 𝛽𝑘,𝑖 is the beta of asset i with respect to factor k, and  𝛾𝑘 is the premium for a unit 

of factor risk. For the CAPM, 𝐾 = 1 and for Fama-French three-factor model, which we refer to 

as FF3, 𝐾 = 3. 

 Asset returns follow the J-factor model below:1 

𝑟𝑖,𝑡 = 𝐸[𝑟𝑖] +∑𝛽𝑘,𝑖 𝑓𝑘,𝑡 + 𝜉𝑖,𝑡

𝐽

𝑘=1

, (2) 

 

where 𝑓𝑘,𝑡 is the realization of the common factor k, and 𝜉𝑖,𝑡 asset specific return at time t. Factor 

realization 𝑓𝑘,𝑡 is the innovation or the unexpected component of factor k. For instance, let 𝐹𝑘,𝑡  be 

the total factor realization of the kth factor, then 𝑓𝑘,𝑡 = 𝐹𝑘,𝑡 − 𝐸[𝐹𝑘,𝑡 ] and 𝐸[𝑓𝑘,𝑡 ] = 0. We define 

a “no-beta risk premium” (NBRP) model where 𝐸[𝑟𝑖] =  𝐸[𝑟𝑚], and we identify this model with 

𝐾 = 0. 

In general the 𝐽 factors in the multifactor model (3) include the 𝐾 priced factors from the 

asset pricing model as well as additional unpriced factors that describe realized returns but are 

excluded from the asset pricing model. For example, the 𝐽 factors could include industry factors 

that are unpriced perhaps because they are not correlated with future investment opportunity set or 

to consumption. Therefore, in  general 𝐽 ≥ 𝐾. Factor returns and asset specific returns are all 

normally distributed. 

 

1.2 The Model  

 This subsection presents a rational expectations model that identifies the alphas that 

investors use to make their mutual fund investment decision. The following are our assumptions:  

(a) Rational Economy: All agents in the rational expectations economy are symmetrically 

informed. 

(b) Mutual funds and skill: There are N mutual funds in the economy and 𝑁 ⟶ ∞. Manager 

of fund p is endowed with stock selection skills that allow them to generate gross returns 

                                                           
1Eq. 3 imposes the condition that the intercept of the return generating process for each asset equals its expected 

return.     
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of 𝜙𝑝 in excess of the K-factor asset pricing benchmark. Investors know the true asset 

pricing model. Fund manager skill 𝜙𝑝~𝑁(𝜙0, 𝜈), where 𝜙0 is average skill and 𝜈 is the 

precision of the distribution of skill at time 0. 𝜙0 and 𝜈 are common knowledge. 

(c) Costs of active management: Funds incur certain costs for active management, which is 

a function of total assets under management, denoted as 𝑞,  and 𝑐(𝑞) is this cost per unit 

of assets. The cost 𝑐(𝑞) includes both fund fees and the costs of administration and trading 

including administrative costs, brokerage costs and price impact. There are diseconomies 

of scale and hence 𝑐(𝑞) is an increasing function of q. The only further assumption that we 

impose on 𝑐(𝑞) is that lim
𝑞→∞

𝑐(𝑞) = ∞, which ensures that the size of a mutual fund for any 

skill level is finite.  

(d) Gross and net returns: Let 𝑅𝑝,𝑡 and 𝑟𝑝,𝑡 be fund p’s gross and net returns at time t, 

respectively. 𝑅𝑝,𝑡 = 𝑟𝑝,𝑡+ 𝑐(𝑞𝑝.𝑡−1). Funds’ net returns are observable, both to investors in 

the model economy and to econometricians. Investors can also compute 𝑅𝑝,𝑡 since they 

know q and 𝑐(𝑞) but econometricians observe only 𝑟𝑝,𝑡. 

(e) Expected return and return generating process: Eqs. (1) and (2) specify the expected 

returns and the return generating process in this economy, which are both common 

knowledge. The net return at time t is:2 

𝑟𝑝,𝑡 = 𝜙𝑝 + ∑𝛽𝑘,𝑝𝛾𝑘

𝐾

𝑘=1⏟      
Expected return Eq. (1)

+ ∑𝛽𝑘,𝑝 𝑓𝑘,𝑡 + 𝜉𝑝,𝑡

𝐽

𝑘=1⏟            
Unexpected return Eq. (2)

−  𝑐(𝑞𝑝,𝑡−1), (3) 

 From Eq. (3), expected abnormal return based on the true asset pricing model is: 

Et(𝑟𝑝,𝑡+1) − ∑𝛽𝑘,𝑝𝛾𝑘

𝐾

𝑘=1

= Et(𝜙𝑝) −  𝑐(𝑞𝑝,𝑡), (4) 

where 𝐸𝑡 denotes expectation as of time t.   

(f) Competitive Market: As in Berk and Green (2004), the mutual fund market is perfectly 

competitive. Therefore, expected alpha net of fees and costs for investing in any mutual 

fund equals zero in equilibrium: 

                                                           
2 Funds’ gross returns follow the return generating process (2),  plus 𝜙𝑝

𝐾. Investors earn net returns in (3) after all 

costs.    
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Et(𝜙𝑝) −  𝑐(𝑞𝑝,𝑡) = 0. (5) 

  Assumptions (a) through (d) and (f) are the same as in Berk and Green (2004). We add 

assumption (e) about expected asset returns and return generating factor model to allow investors 

the option of computing alphas using different models and then determine which of these alphas 

will win the alpha-flow horse race. 

 In our model, investors observe mutual fund returns and the realized returns on the J factors 

each period. For now, we assume 𝛽𝑘,𝑝 is common knowledge. Investors compute alphas, 𝛼̂𝑝,𝜂,𝑡, 

relative to an 𝜂-factor model, as: 

𝛼̂𝑝,𝜂,𝑡 = 𝑟𝑝,𝑡 −∑𝛽𝑘,𝑝𝐹𝑘,𝑡 

𝜂

𝑘=1

, (6) 

where  𝐹𝑘,𝑡 is realized factor returns.  

 Investors could possibly use any 𝜂-factor model to compute alphas and update their priors 

about fund manager skills. Which particular model would they use? For analytic convenience, we 

further assume that the average factor betas of funds equal betas for the market portfolio. For the 

market, 𝛽𝑘,𝑚𝑎𝑟𝑘𝑒𝑡 =  1 for 𝑘 = market and  𝛽𝑘,𝑚𝑎𝑟𝑘𝑒𝑡 =  0 for 𝑘 ≠ market. With this assumption, 

the average mutual fund alpha estimated with any 𝜂 equals zero for any factor as we show in the 

following proposition.3  

 

Lemma 1: Under the assumptions stated above the cross-sectional average of alphas estimated 

using any 𝜂-factor model equals zero for all factor realizations, i.e.  

 

1

𝑁
∑ (𝛼̂𝑝,𝜂,𝑡 |𝐹𝑘,𝑡, 𝑘 = 1,… , 𝐾)

𝑁

𝑝=1
= 0 ∀ 𝜂. (7) 

 

Proof: Substitute 𝑟𝑝,𝑡 from Eq. (3) to Eq. (6) and use the competitive market condition (5) to get 

(7).  

 

                                                           
3 If the average factor betas for funds are different from market portfolio betas, we could subtract the average of alpha 

for all funds from 𝛼̂𝑝,𝜂,𝑡 and the average of this difference equals zero for any factor realization. Since investment 

decisions are made based on the relative values of alpha both approaches would yield the same result.  
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The following proposition presents the distribution of investors’ posterior each period conditional 

on using a particular 𝜂-factor model to compute alphas.  

 

Proposition 1: Suppose investors use an 𝜂-factor model to compute alphas. Let 𝜙𝑝,𝜂,𝑡 be the mean 

of investors’ time t posterior of fund k’s skill conditional on the realization of 𝑋𝑝,𝜂,1, 𝑋𝑝,𝜂,2,

… 𝑋𝑝,𝜂,𝑡, where 𝑋𝑝,𝜂,𝑡 = 𝛼̂𝑝,𝜂,𝑡 + 𝑐(𝑞𝑝,𝑡−1), and let 𝑋̅𝑝,𝜂,𝑡 be the mean of these realizations. 

Investors’ posterior of  𝜙𝑝 is normally distributed with mean 𝜙𝑝,𝜂,𝑡, where: 

 

𝜙𝑝,𝜂,𝑡 =
𝜈 𝜙0 + 𝑡𝜗𝛼̂,𝜂 𝑋̅𝑝,𝜂,𝑡 

𝜈 +  𝑡𝜗𝛼̂,𝜂
, (8) 

and precision 𝜈 + 𝑡𝜗𝛼̂,𝜂 , where 𝜗𝛼̂,𝜂 =
1

𝜎𝛼̂,𝜂
2 . Note that the precisions of 𝑋𝑝,𝜂,𝑡 and 𝛼̂𝑝,𝜂,𝑡 are equal 

conditional on information available at time t-1 since 𝑐(𝑞𝑝,𝑡−1) is known at that time. 

 

Proof: See Theorem 1 in DeGroot (1970, p. 167). 

Proposition 1 is a well-known theorem in Bayesian analysis. Investors know that the 

average skill of fund managers is  𝜙0 at time 0. After observing net returns for t periods, investors 

compute alphas for each period. As Lemma 1 shows, the mean of 𝛼̂𝑝,𝜂,𝑡 is zero each period. 

Investors also know the cost 𝑐(𝑞𝑡−1) each period and therefore they can compute 𝑋𝑝,𝜂,𝑡. Because 

of the perfect competition assumption (5) the expected value of 𝑐(𝑞) in 𝑋̅ across all funds equals 

𝜙0. But mean of both investors prior and posterior equal 𝜙0 as long as funds do not enter or exit 

the sample.  

Proposition 1 shows that the precision of the posterior distribution of  𝜙𝑝,𝜂,𝑡
𝐾  increases 

monotonically with an increase in the precision of 𝛼̂𝑝,𝜂,𝑡 . Because rational investors prefer a more 

precise estimator to a less precise estimator, investors would use the multi factor model that yields 

the most precise estimate of alphas.  

   

 Corollary: Rational investors would use the 𝜂-factor model with the smallest variance (or 

largest precision) to revise their priors about fund skills.  

   

We denote the number of factors in the factor this optimal model as 𝜂∗. 
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1.3 Alphas and fund flows  

  The literature typically runs the following regression between alphas and fund flows to 

draw inferences about asset pricing model or investor sophistication: 

Γ𝑝,𝑡 = 𝑎𝜂 + 𝑏𝜂 × 𝛼̂𝑝,𝜂,𝑡 + 𝜔𝑝,𝜂,𝑡, (9) 

 

where 𝛼̂𝑝,𝜂,𝑡 is computed under various 𝜂-factor models in Eq. (6) and Γ𝑝,𝑡 is the net flow of funds 

into mutual fund 𝑝, defined as: 

Γ𝑝,𝑡 =
𝑞𝑝,𝑡 − 𝑞𝑝,𝑡−1(1 + 𝑟𝑝,𝑡)

𝑞𝑝,𝑡−1
= 
𝑞𝑝,𝑡 − 𝑞𝑝,𝑡−1

𝑞𝑝,𝑡−1
− 𝑟𝑝,𝑡. (10) 

 

  BvB, BHO and others in related literature run a horse race with the slope coefficient 

𝑏𝜂 from (9) and draw inferences about the true asset pricing models and investors sophistication 

based on the winner.4 This subsection derives fund flows in the model as a function of the alpha 

investors use to update their priors and examines the tenability of such inferences.  

 As we showed in the last subsection, investors update their priors each period using the 

most precise alpha estimator 𝛼̂𝑝,𝜂∗,𝑡 and decide on which funds they would invest in or divest from 

each period. The competitive market condition in Eq. (5) implies that in a competitive equilibrium 

the flow results in 𝑞𝑝,𝑡 such that 𝑐(𝑞𝑡)  equals 𝜙𝑝,𝜂∗,𝑡.  To determine the fund flow in this 

competitive equilibrium, we use the following recursive equation for 𝑐(𝑞𝑡) that follows from Eq. 

(8) in Proposition 1:5  

 

𝑐(𝑞𝑡) = 𝑐(𝑞𝑡−1) +
𝜗𝛼̂,𝜂∗

𝜈 +  𝑡𝜗𝛼̂,𝜂∗
× 𝛼̂𝑝,𝜂∗,𝑡. (11) 

 

                                                           
4 BvB use a regression that uses only the signs of Γ𝑝,𝑡 and 𝛼̂𝑝,𝜂,𝑡. We show in a later section that BvB regression yields 

identical inference as the linear regression (9). 
5 Berk and Green (2004) derive this equation based on DeGroot’s (1970) theorem. Appendix 3 presents a derivation 

for easy reference.  



9 
 

To determine a functional relation between flow and alpha, we assume that the cost function is 

given by: 

𝑐(𝑞) = 𝛿 × 𝑞, (12) 

 

where 𝛿 is a constant that is common knowledge. Using this cost function, from (10) and (11) we 

get: 

Γ𝑝,𝑡 =
1

𝛿 × 𝑞𝑡−1
 

𝜗𝛼̂,𝜂∗

𝜈 +  𝑡𝜗𝛼̂,𝜂∗
× 𝛼̂𝑝,𝜂∗,𝑡 − 𝑟𝑝,𝑡. (13) 

  

 Eq. (13) shows that flows are directly related to 𝛼̂𝑝,𝜂∗,𝑡, the most precise estimate. As we 

show later, the winner of the horse race also depends on the sign of the covariance between Γ𝑝,𝑡 

and 𝛼̂𝑝,𝜂∗,𝑡. Intuitively, we expect that Covariance(Γ𝑝,𝑡 , 𝛼̂𝑝,𝜂∗,𝑡) > 0 but we need to show that it is 

indeed positive in our model. The first term on the right-hand side of Eq. (13) shows that Γ𝑝,𝑡 

increases with 𝛼̂𝑝,𝜂∗,𝑡 because its coefficient is positive. However, because the second term equals 

−(𝛼̂𝑝,𝜂∗,𝑡 + ∑ 𝛽 𝑘,𝑝𝐹𝑘,𝑡 
𝜂∗

𝑘=1 ) from Eq. (6), there is a negative relation between this term and Γ𝑝,𝑡. 

The reason is that  Γ𝑝,𝑡 is the flow net of changes in assets under management due to raw returns 

and any change due to return has a negative impact on Γ𝑝,𝑡. So it is mathematically possible that 

the net effect would be negative.  

 As a first step, we examine the relation between Γ𝑝,𝑡 and 𝛼̂𝑝,𝜂∗,𝑡. Differentiating (13), we 

get:6 

𝑑 Γ𝑝,𝑡
𝑑𝛼̂𝑝,𝜂∗,𝑡

=
1

𝛿𝑞𝑡−1
×

𝜗𝛼̂,𝜂∗

𝜈 +  𝑡𝜗𝛼̂,𝜂∗
− 1. (14) 

 

Eq. (14) indicates that the slope is negative if: 

                                                           

6 We use the result that 
𝑑𝑟𝑝,𝑡

𝑑𝛼̂𝑝,𝜂∗,𝑡
= 1 from (6). 
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𝜗𝛼̂,𝜂∗

𝜈 +  𝑡𝜗𝛼̂,𝜂∗
< 𝛿𝑞

𝑡−1
. (15) 

 

 Eq. (11) shows that fund size would increase when 𝛼̂𝑝,𝜂∗,𝑡 > 0 because positive alpha leads 

to upward revision of priors. When 𝛼̂𝑝,𝜂∗,𝑡 = 0, the fund size does not increase in equilibrium, 

which implies that Γ𝑝,𝑡 = 0 for 𝛼̂𝑝,𝜂∗,𝑡 = 0.  So if 
𝑑Γ𝑝,𝑡

𝑑𝛼̂𝑝,𝜂∗,𝑡
< 0, there would be negative flow in 

equilibrium when  𝛼̂𝑝,𝜂∗,𝑡 > 0.   

 The right hand side of inequality (15) is the cost of active management per unit of fund. 

This condition indicates that if assets under management is sufficiently large, then because of the 

incremental cost of active management, investors would actually withdraw funds (or the mutual 

fund would voluntarily return funds) even if investors positively update their priors about fund 

manager skills. Therefore, funds in this economy cannot grow beyond the critical size defined by 

Eq. (15). Formally, from (15) the maximum size 𝑄𝑚𝑎𝑥 for a fund in this economy is: 

𝑄𝑚𝑎𝑥 =
1

𝛿
 

𝜗𝛼̂,𝜂∗

𝜈 +  𝑡𝜗𝛼̂,𝜂∗
, (16) 

because beyond this point any increase in fund size, even if it is passively due to fund size, will 

result in outflow of funds.7 Since the maximum fund size is given by (16), in this economy,  

𝑑Γ𝑝,𝑡
𝑑𝛼̂𝑝,𝜂∗,𝑡

> 0 for 𝑞𝑡 ≤ 𝑄
𝑚𝑎𝑥

. (17) 

 

 Proposition 2 below formally states the results from our model that we will use to examine 

what we can learn from the horse race regressions.  

Proposition 2: The net flow of funds Γ𝑝,𝑡 in any period is only a function of alpha from the most 

precise estimator and not from other estimators. Also, in equilibrium:  

𝐶𝑜𝑣(𝛼̂𝑝,𝜂∗,𝑡, Γ𝑝,𝑡) > 0 (18) 

                                                           
7 Historically, a few mutual funds have been closed to new investors evidently because they hit against the maximum 

assets under management condition and were not willing to accept additional assets. Several successful hedge funds 

are also closed to new investors and a well-known example is Renaissance Technologies which returned all funds 

from its outside investors by 2005 (https://en.wikipedia.org/wiki/Renaissance_Technologies#Monemetrics). 
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Proof: Eq. (13) proves the first part of the proposition. See Appendix 5 for proof of the second 

part.  

1.4 Alpha-fund flows horse race  

 The literature fits regression (9) using estimates of 𝛼̂𝑝,𝜂,𝑡 from competing 𝜂-factor models and 

runs a horse race with the slope coefficient 𝑏̂𝜂. What can we learn about the true asset pricing 

model or about investor sophistication based on this horse race? 

 

 The slope coefficient estimate is: 

𝑝𝑙𝑖𝑚 𝑏𝜂 =
𝐶𝑜𝑣(Γ𝑝, 𝛼̂𝑝,𝜂,𝑡)

𝜎𝛼̂𝑝,𝜂,𝑡
2  (19) 

where 𝜎𝛼̂𝑝,𝜂,𝑡
2  is cross-sectional  variance of  𝛼̂𝑝,𝜂,𝑡. As Proposition 2 shows Γ𝑝 is a function of  

𝛼̂𝑝,𝜂∗,𝑡 and therefore any covariance of Γ𝑝 with other alphas is through their relations with 𝛼̂𝑝,𝜂∗,𝑡. 

Since the variance of alpha estimates from the less-than-optimal estimators are bigger than that 

from the optimal estimator, we can express other estimators as: 

 

𝛼̂𝑝,𝜂,𝑡 = 𝛼̂𝑝,𝜂∗,𝑡 + 𝜁𝑝,𝜂,𝑡, (20) 

 

where 𝑉𝑎𝑟(𝜁𝑝,𝜂,𝑡) > 0 for 𝜂 ≠  𝜂
∗, and 𝐶𝑜𝑣(𝜁𝑝,𝜂,𝑡 , 𝛼̂𝑝,𝜂∗,𝑡  ) =  0. Because Γ𝑝 is correlated with 

𝛼̂𝑝,𝜂∗,𝑡 through Eq. (13) and not with noise in the less efficient estimates,  

 

𝐶𝑜𝑣(Γ𝑝, 𝛼̂𝑝,𝜂,𝑡) = 𝐶𝑜𝑣(Γ𝑝, 𝛼̂𝑝,𝜂∗,𝑡  ), and (21) 

 

 

𝑝𝑙𝑖𝑚 𝑏𝜂 =
𝐶𝑜𝑣(Γ𝑝, 𝛼̂𝑝,𝜂∗,𝑡  )

𝜎𝛼̂𝑝,𝜂∗,𝑡
2 +  𝑉𝑎𝑟(𝜁𝑝,𝜂,𝑡)

 (22) 

 

Since 𝑉𝑎𝑟(𝜁𝑝,𝜂,𝑡) > 0 for 𝜂 ≠  𝜂
∗, and  𝑏𝜂∗ will win this horse race in a rational economy. 

Therefore, to determine what implications we can draw from this horse race about asset pricing 
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models and investor sophistication, we need to identify 𝜂∗ based on the parameters in the data.  

  

1.5 Precision of alpha estimate 

 We first examine the sources of measurement error in alpha estimators to understand the 

determinants of precision. If investors know true betas they can use Eq. (6) to compute alphas, but 

we also examine a setting where investors estimate betas. For instance, investors may estimate 

betas using the following time series regression with T periods of data: 

𝑟𝑝,𝜏 = 𝑎𝑝,𝑡 +∑𝛽𝑘,𝑝,𝑡 𝐹𝑘,𝜏 + 𝑒𝑝,𝜏,         𝜏 =

𝐽

𝑘=1

𝑡 − 𝑇 to 𝑡 − 1. (23) 

The 𝜂-factor model alpha estimator using beta estimates 𝛽̂𝑘,𝑝,𝑡 is:  

𝛼̂𝑝,𝜂,𝑡 = 𝑟𝑝,𝑡 −∑𝛽̂𝑘,𝑝,𝑡 𝐹𝑘,𝑡 

𝜂

𝑘=1

. (24) 

 

We can substitute the true asset pricing model in Eq. (1) and the return generating process (2) in 

(24) to get: 

𝛼̂𝑝,𝜂,𝑡 − (𝜙𝑝 − 𝑐(𝑞𝑡−1)) = 

{
 
 
 
 

 
 
 
 
− ∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝜂

𝑘=𝐾+1⏟            
  +

Model Misspecification error

∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 

𝐽

𝑘=𝜂+1

+∑(𝛽̂
𝑘,𝑝,𝑡

− 𝛽
𝑘,𝑝
)

𝜂

𝑘=1

𝐹𝑘,𝑡 + 𝜉𝑝,𝑡
⏟                            

Estimation error

  for  𝜂 ≥ 𝐾,

 ∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝐾

𝑘=𝜂+1⏟          

  +

Model Misspecification error

∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 

𝐽

𝑘=𝜂+1

+∑(𝛽̂
𝑘,𝑝,𝑡

− 𝛽
𝑘,𝑝
)

𝜂

𝑘=1

𝐹𝑘,𝑡 + 𝜉𝑝,𝑡
⏟                            

Estimation error

  for  𝜂 < 𝐾

 

 

 

(25) 

𝜙𝑝 and 𝑐(𝑞𝑡−1) in this expression are unobservable but known to investors prior to time t. 

Therefore, these terms do not contribute to the variance of 𝛼̂𝑝,𝜂,𝑡, which is what is of interest now. 

Appendix 4 presents the details. The first part of the equation is model misspecification error, 

which we will denote by 𝜃𝜂,𝑝. Model misspecification error 𝜃𝜂,𝑝 is zero if 𝜂 = 𝐾. If 𝜂 > 𝐾, we 

mistakenly attribute premium for risks that are not truly priced in the economy and therefore we 

add noise to our alpha estimate. For example, if CAPM were the true model but we use FF3 to 
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compute alphas, we mistakenly assume that funds with positive HML or SMB command bigger 

expected returns than their true expected returns. This misspecification adds to alpha estimation 

error.   

 For priced factors in an asset pricing model, stocks with bigger betas with respect to those 

factors earn a risk premium relative to stocks with smaller betas. But stocks’ expected returns are 

not related to their betas with respect to unpriced factors. It is possible that 𝐸(𝐹𝑘) > 0 for some 

unpriced factors. For example, Fama and French (1992) show that the cross-section of stock 

returns is not related to market betas and conclude that CAPM does not hold because market risk 

is not priced. But empirically the mean of market excess return is positive. Fama and French 

evidence illustrates the empirical possibility that 𝐸(𝐹𝑘) may be bigger than zero even if 𝐹𝑘 is 

unpriced and we allow for such possibilities.8  

 The second part of the equation (25) is statistical estimation error which we denote by 𝜀𝜂,𝑝. 

Ignoring beta measurement error for now, 𝜀𝜂,𝑝 = ∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 + 𝜉𝑝,𝑡
𝐽
𝑘=𝜂+1 . Therefore,  

𝜎𝜀𝜂,𝑝
2 = 𝜎𝑟𝑝

2 (1 − 𝑅𝑎𝑑𝑗,𝜂,𝑝
2 ) (26) 

where 𝜎𝑟𝑝
2  is the variance of fund returns and 𝑅𝑎𝑑𝑗,𝜂,𝑝

2  the fraction of fund return variance that is 

explained by 𝜂 factors with appropriate adjustment for degrees of freedom. Suppose 𝜀𝜂,𝑝 is 

uncorrelated across funds. Then statistical estimation error is the average of 𝜎𝜀𝜂,𝑝
2  across funds. 

Therefore, Eq. (26) indicates that any common factor that increases 𝑅𝑎𝑑𝑗
2 , whether that factor is 

priced or unpriced, would reduce estimation error in 𝛼̂𝑝,𝜂,𝑡. 

 Measurement errors in betas would also add to statistical estimation error and affect the 

choice of factors that one would include in computing alphas. For instance, a factor that may 

marginally increase 𝑅𝑎𝑑𝑗
2  may still not be desirable if the measurement error in beta with respect 

to that factor increases the alpha estimation error. This issue is particularly important if that factor 

is correlated with other factors in the regression because the addition of that factor would increase 

the measurement errors of other factor betas as well.  

                                                           
8 We do not take a view on whether CAPM holds based on Fama-French evidence and we use the evidence only for 

illustration.   
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 There are two potential sources of measurement error in betas. Even if true betas were 

constant, beta estimates using a time-series would contain statistical estimation errors. 

Additionally, fund betas would vary over time because individual stock betas may be time-varying 

and active funds typically revise their portfolios over time. Therefore, the difference between the 

true betas at time t+1 and the average beta during the estimation period would add to the 

measurement error in betas. 

 Eq. (25) indicates that if 𝜂 < 𝐾, each factor that we omit from K adds to both 

misspecification error and to estimation error. Therefore, if betas with respect to a priced factor 

are known without error then inclusion of that factor would reduce measurement error. However, 

if 𝜂 > 𝐾, each additional factor would reduce the estimation error, but add to misspecification 

error. Therefore, whether investors would optimally include these additional factors depends on 

the relative contribution to these components in the data, which can only be empirically 

determined.  

1.6 CAPM vs. No-beta risk premium model: An illustrative example 

 This subsection considers an example that illustrates the contribution of 𝜎𝜀𝜂
2  and 𝜎𝜃𝜂

2  to 

precision of the alpha estimates. Suppose asset returns are generated by the following single factor 

model: 

𝑟𝑝,𝑡 = 𝐸[𝑟𝑝] + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡. (27) 

 

Expected returns are determined by one of the following two models:  

i. NBRP model: The expected returns on all stocks are equal, i.e.  

𝐸[𝑟𝑝] = 𝐸[𝑟𝑚]  ∀ 𝑝 (28) 

where  𝐸[𝑟𝑚] is the expected return on the market portfolio. 

ii. CAPM:  

𝐸[𝑟𝑝] = 𝑟𝑓 + 𝛽𝑝(𝐸[𝑟𝑚] − 𝑟𝑓) (29) 

 

Consider the following two Estimators of alpha: 
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 Market adjustment (No-beta risk model):  

𝛼̂𝑝,0 = 𝑟𝑝,𝑡 − 𝑟𝑚,𝑡 (30) 

 

 Market model adjustment (CAPM):  

𝛼̂𝑝,1 = 𝑟𝑝,𝑡 − [𝑟𝑓 + 𝛽̂𝑝(𝑟𝑚,𝑡 − 𝑟𝑓)] (31) 

where 𝛽̂𝑝 is computed using market model regression. 

 The variance of measurement errors of 𝛼̂𝑝,0 and 𝛼̂𝑝,1, which include both model 

misspecification error and statistical estimation error are tabulated below (Appendix 1 presents the 

derivations): 

 Alpha Estimator 

a. Estimated with Mkt Adj. (Eq. 30) b. CAPM (Eq. 31) 

True model:   

i. No-beta risk 

premium model 
𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛽

2(𝑟𝑚,𝑡 − 𝐸[𝑟𝑚])
2
+ 𝜎𝜉

2|𝑟𝑚,𝑡 

 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛽

2𝐸(𝑟𝑚)
2 + 𝜎

𝛽̂−𝛽
2 𝑟𝑚,𝑡

2 + 𝜎𝜉
2|𝑟𝑚,𝑡 

 

ii. CAPM 𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛽

2 𝑟𝑚,𝑡
2 + 𝜎𝜉

2|𝑟𝑚,𝑡 

 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛽̂−𝛽

2 𝑟𝑚,𝑡
2 + 𝜎𝜉

2|𝑟𝑚,𝑡 

 

The variables in the table above are: 

Variables Definition 

𝜎𝑢
2|𝑟𝑚,𝑡 Variance of total measurement error conditional on the realization of market return 

i.e. 𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛼̂−𝛼 

2 |𝑟𝑚,𝑡 

𝜎𝛽
2 Variance of true beta across funds. 

𝜎
𝛽̂−𝛽
2  Variance of measurement error across funds both due to the standard error of 

regression estimates and also due to time-variation in beta. 
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𝜎
𝛽̂
2 Variance of 𝛽̂𝑝 across funds = (𝜎𝛽

2 + 𝜎
𝛽̂−𝛽
2 ) 

𝜎𝜉
2|𝑟𝑚,𝑡 Variance of fund specific returns (assumed to be the same for all funds for 

expositional convenience) conditional on the realization of market return 

 

 The results in the above table illustrate the factors that contribute to total measurement 

error and the inherent trade-offs. For example, the term in cell (i)(b) can be grouped as: 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝜎𝛽

2𝐸[𝑟𝑚]
2

⏟      
Model Misspecification Error

+ 𝜎
𝛽̂−𝛽
2 𝑟𝑚,𝑡

2 + 𝜎𝜉
2|𝑟𝑚,𝑡⏟            

Estimation Error

 
(32) 

 

The first term in this expression is variance of model misspecification error, which arises because 

of using market model adjustment in equation (31) when ‘no-beta risk’ model is true. The last two 

terms are due to statistical estimation error. 

  To consider the trade-offs between model misspecification error and estimation error, 

consider the last row where CAPM is true. The variances of estimation errors in alpha using 

Equations (30) and (31) are given in the last row of the table, and they both contain the term 𝜎𝜉
2.  

The variance of alpha estimated with Equation (30) contains the additional term 𝜎𝛽
2𝑟𝑚,𝑡
2 , which is 

the cross-sectional variation of true fund beta, and that with Equation (31) contains the term 𝜎
𝛽̂−𝛽
2 , 

which is the variance of measurement error in beta. If the beta estimates are sufficiently noisy (i.e. 

big 𝜎
𝛽̂−𝛽
2 ) or if differences in betas across funds are small, then the variance of measurement error 

with Eq. (30) could be smaller than with estimator (31). In this case, we can infer from equation 

(22) that the slope coefficient 𝑏𝜂 in equation (9) would be bigger for the market adjusted  𝛼̂ from 

estimator (30) compared to the market model 𝛼̂ from estimator (31). In other words, estimate of 

alpha using Eq. (30) would win out in a horse race of slope coefficients against alpha estimated 

with Eq. (31) even when CAPM is true (a counterexample to the underlying assumption in BvB), 

and even if investors were truly sophisticated (a counterexample to the underlying assumption in 

BHO because investors optimally do not use all factors in the return generating process). Of course, 
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this is only an illustrative example, and we should empirically examine the true parameters to 

understand what we can learn from the horse races.  

2. Simulation Experiment  

 

 BvB hypothesize that the winner of the alpha-fund flow horse race is the true asset pricing 

model, but BHO hypothesize that the winner would be the model that includes all priced and 

unpriced factors if investors are sophisticated. We can formally state their hypotheses as follows: 

Suppose the true asset pricing model is a K-factor asset pricing model and returns are generated 

by a J-factor model. When we fit regression (9) with alpha computed with each  𝜂-factor model 

where 0 ≤ 𝜂 ≤ 𝐽, the biggest slope coefficient obtains when 𝜂=𝜂∗ i.e. when 𝛼̂𝑝,𝜂∗ is computed with 

respect to an 𝜂∗-factor model.  

A1. Asset Pricing test hypothesis: The model that yields the biggest correlation is the true asset 

pricing model, i.e. 𝜂∗=K. 

 

A2. Investor Sophistication hypothesis (BHO): The most accurate model is the J-factor model that 

generates asset returns, i.e. 𝜂∗=J. 

 

 However we show in Section 1 the winner need not necessarily be a K or J factor model 

because the winner broadly depends on the following factors: (i) extent to which various factor 

models explain fund returns (i.e. model 𝑅𝑎𝑑𝑗
2 ), (ii) beta estimation error (𝜎

𝛽̂−𝛽
2 ), (iii) variation of 

betas across funds (𝜎𝛽
2) and (iv) the “true” asset pricing model. Therefore, the winner would 

depend on the characteristics of the data, and we can only empirically identify 𝜂∗.  

 To do so, we can estimate the first three of the four items we list above from the data but 

we do not know the “true” asset pricing model. Therefore, we estimate the first three items and 

use these parameters to generate simulated returns under each asset pricing model. We then run 

the horse race with regressions (9) in the simulation to determine which factor model would win 

the race in a rational expectations economy, which in turn would inform us the implications we 

can draw from the horse race. 

  

2.1 Data and Simulation parameters  

 We estimate the parameters for the simulation with the sample of funds in the CRSP 

survivor-bias free mutual fund database. Our sample includes all actively managed domestic equity 
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funds in the January 1990 to June 2017 sample period. Our sample is comprised of all actively 

managed domestic equity funds. CRSP identifies these funds with objective codes ‘EDC’ and 

‘EDY.’ When a fund has multiple share classes, we add assets in all share classes to compute its 

TNA and we compute fund level return as the weighted average of returns of individual share 

classes with lagged TNA as weights. The sample for month t includes all funds with at least $10 

million assets under management as of the end of month t-1. We follow BHO and exclude funds 

that had flows smaller than -90% or greater than 1000% in any month from the sample to avoid 

the effect of outliers. The sample for month t includes only funds that have returns data in all 

months from t-61 to t-1 to estimate betas.9   

 Table 1 presents the summary statistics for the funds in our sample. The sample is 

comprised of 1224 funds per month on average.  The average monthly fund flow into a fund is 

0.25% of its TNA the previous month. Around half of the funds in the sample have either an entry 

or exit load.  

 

2.2 𝑹𝒂𝒅𝒋
𝟐  and beta measurement error: A first look 

 We use the seven factor model from BHO as the J-factor model that generates returns. The 

seven factors are the three Fama-French factors (market (𝑚𝑘𝑡 − 𝑟𝑓),   𝑆𝑀𝐵 and 𝐻𝑀𝐿), Carhart 

(1996) momentum factor (UMD), and three industry factors (𝐼𝑁𝐷1, 𝐼𝑁𝐷2 and 𝐼𝑁𝐷3). Following 

BHO, we construct the three industry factors as the first three principal components of residuals 

from regressing Fama-French 17 equal weighted industry portfolios on FFC4 factors.   

 Before we proceed with the simulation, we take a first look at some of the determinants of 

the accuracy of alpha estimates. One important determinant is the incremental explanatory power 

of each additional factor. We fit the following time series regression with 𝜂 factors each month t 

using data for each fund from months t-60 to t-1 and compute average 𝑅𝑎𝑑𝑗
2  for each model:  

𝑟𝑝,𝜏 = 𝑎𝑝,𝜂,𝑡 +∑𝛽𝑘,𝑝,𝑡 𝐹𝑘,𝜏 + 𝑒𝑝,𝜂,𝜏,         𝜏 =

𝜂

𝑘=1

𝑡 − 60 to 𝑡 − 1. (33) 

 

                                                           
9 This sample selection criterion excludes funds from the sample during the first 60 months of their existence. 

Therefore, our sample is not exposed to potential incubation bias that Evans (2010) and Elton, Gruber and Blake 

(2001) document.  
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Table 2 reports the time-series averages. For the market model, we compute 𝑅𝑎𝑑𝑗
2  as  1 −

(∑(𝑟𝑝,𝑡 − 𝑟𝑚𝑘𝑡)
2
∑(𝑟𝑝,𝑡 − 𝑟̅𝑝)

2
⁄ ).   

 Market-adjusted returns have the lowest 𝑅𝑎𝑑𝑗
2  of .774. The 𝑅𝑎𝑑𝑗

2  for the single factor market 

model is bigger at .820. 𝑅𝑎𝑑𝑗
2  increase to .892 for the Fama-French three-factor model, but the 

increase is fairly gradual as we go from the Fama-French three-factor model to the seven factor 

model.  

 Another important component in the measurement error of  𝛼̂ is the variance of 

measurement error in betas across funds (𝜎
𝛽̂−𝛽
2 ). The term 𝜎

𝛽̂−𝛽
2  would differ from the time series 

variance of OLS estimation error in regression (9) for two reasons. First, if the fund-specific returns 

are correlated across funds, then the average variance of time-series errors will not equal 𝜎
𝛽̂−𝛽
2 . 

Secondly, as we discussed earlier the OLS estimates are unbiased estimates of mean betas during 

the estimation periods and any difference between this average and the realized beta in month t+1 

is an additional source of measurement error.   

 To estimate the magnitude of this error we first estimate the following regressions for each 

fund for each month: 

(𝑟𝑝,𝜏 − 𝑟𝑓,𝜏) = 𝛼𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 + 𝛽𝑝,𝑘,𝑡

𝑝𝑎𝑠𝑡 𝐹𝑘,𝜏 + 𝑒𝑝,𝑘,𝜏                           𝜏 = 𝑡 − 60 to 𝑡 − 1, 

(𝑟𝑝,𝜏 − 𝑟𝑓,𝜏) = 𝛼𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

+ 𝛽𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 𝐹𝑘,𝜏 + 𝑒𝑝,𝑘,𝜏                   𝜏 = 𝑡 to 𝑡 + 11 
(34) 

 

where 𝐹𝑘,𝜏 is the factor with respect to which betas are estimated. Suppose betas for a particular 

fund are constant over time.  

𝛽̂𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 = 𝛽𝑝,𝑘 + 𝑢𝑝,𝑘,𝑡

𝑝𝑎𝑠𝑡, and 

𝛽̂𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

= 𝛽𝑝,𝑘 + 𝑢𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 
(35) 

where 𝛽𝑝,𝑘is fund p’s true beta with respect to factor k. 

Consider the following cross-sectional regression for month t: 

𝛽̂𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

= 𝑎𝑡 + 𝑏𝑡 × 𝛽̂𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 + 𝑒𝑝,𝑡 (36) 
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Since we use non-overlapping sample periods to estimate 𝛽𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 and 𝛽𝑝,𝑘,𝑡

𝑓𝑢𝑡𝑢𝑟𝑒
,  𝑢𝑝,𝑘,𝑡

𝑝𝑎𝑠𝑡  and 𝑢𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 

are uncorrelated.  With a sufficiently large number of funds, the probability limit of the slope 

coefficient is:  

plim𝑏𝑡 =
𝑣𝑎𝑟(𝛽𝑝,𝑘)

𝑣𝑎𝑟(𝛽𝑝,𝑘) + 𝑣𝑎𝑟 (𝑢𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡)

 (37) 

 

Therefore, the slope coefficient of regression (35) is the ratio of the cross-sectional variance of the 

factor betas divided by the sum of this variance plus the variance of the measurement error. If this 

slope coefficient is smaller than 0.5 then the variance of true beta is smaller than the variance of 

measurement error. 

 We fit regression (35) each month for each of the betas. All betas are estimated using 

univariate regressions as per equation (34). Table 3 reports the time-series averages of the slope 

coefficients for each beta. The slope coefficients are all greater than .75 for betas with respect to 

the three Fama-French factors, but they are less than .5 for UMD and industry factors. Therefore, 

the variance of measurement error is bigger than the variance of true betas for the latter set of 

factors.  

 

2.3 Simulation: Experimental design 

 To understand how the true asset pricing model and estimation error in alphas impact the 

outcome of the alpha-flow horse race regressions, we simulate a mutual fund economy with 

parameters that match the actual sample of domestic equity funds described in section 2.1. and we 

match the entry and exit of funds in the simulation to that in the actual data. In this simulated 

economy, the fund size evolves over time with flows, net returns generated from managerial skill 

and net returns from passive factor exposures. And fund size affects net returns through its effect 

on costs.  

 The sample of mutual funds and their TNA evolve as follows in the simulation:  

a. Fund origin: We start the simulation with the number of funds equal to that in the sample 

on January 1985.  

b. Skill: The average four factor alpha in our actual sample of domestic equity funds, gross 

of fund fees Ϝ𝑝, is around 5 bps per month. To account for unobservable costs 𝐶(𝑞)/𝑞, we 
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add 10 bps per month to this estimate to account for average transaction costs10. In the first 

month when a fund enters the sample, we randomly draw 𝜙𝑝 for each fund from a normal 

distribution with mean equal to 0.15% and standard deviation of 0.2% per month.11 

c. Betas:  We randomly generate the seven factor betas for each fund from a normal 

distribution with means and standard deviations equal to the parameters tabulated in Table 

4.12 Each factor beta is drawn independently and is constant over the entire sample period. 

d. Fund specific return: We generate monthly fund specific return 𝜖𝑝,𝑡 for each fund from a 

normal distribution with mean zero and standard deviation equal to 2.5%. 

e. Asset pricing model and expected returns: Steps (b) through (d) describe the return 

generating process for the funds and this process does not vary with the asset pricing model. 

However, different common factors that are priced vary across asset pricing models and 

hence different asset pricing models imply different expected return for each fund. The 

term 𝐸𝑚𝑜𝑑𝑒𝑙(𝑟𝑝 − 𝑟𝑓) is the “true” expected excess return and it depends on the model. We 

conduct simulations under three asset pricing models and expected excess returns under 

each model are computed as follows: 

 NBRP risk model: 𝐸𝑁𝑅(𝑟𝑝 − 𝑟𝑓) = 0.699%, 

 CAPM: 𝐸𝐶𝐴𝑃𝑀(𝑟𝑝 − 𝑟𝑓) = 𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ), 

 Fama-French three factor model (FF3): 𝐸𝐹𝐹3(𝑟𝑝 − 𝑟𝑓) = −0.016% +

𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) + 𝛽𝑝,𝑠𝑚𝑏 × (𝑆𝑀𝐵̅̅ ̅̅ ̅̅ ) + 𝛽𝑝,ℎ𝑚𝑙 × (𝐻𝑀𝐿̅̅ ̅̅ ̅̅ ̅),  

(38) 

The overbars above common factor returns indicate sample means. The constant in the 

equation for each model is chosen so that the average fund returns equal sample average 

of market excess returns.  

f. Gross returns: We generate fund returns using the following seven-factor model:  

                                                           
10 Elton et. al. (2012) report that the transaction costs are of the same order of magnitude as expense ratios which 

average to around 10 bps per month. 
11 The monthly cross-sectional variance of 𝛼̂s in the real data is the variance of true alphas plus the measurement error 

of alphas. The measurement error variance in 𝛼̂s is the squared OLS standard errors from the time-series regressions 

used to estimate alphas. The average standard deviation of the difference across models is roughly 0.2% per month.  
12 As Eq. (37) shows, the standard deviation of true beta distribution in the data is the standard deviation of estimated 

beta multiplied by the square root of the respective slope coefficients in Table 3. 
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𝑅𝑝,𝑡 = 𝜙𝑝+𝐸
𝑚𝑜𝑑𝑒𝑙(𝑟𝑝) + 𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓)𝑡

̃ +𝛽𝑝,𝑠𝑚𝑏 × 𝑆𝑀𝐵𝑡̃ + 𝛽𝑝,ℎ𝑚𝑙 × 𝐻𝑀𝐿𝑡̃

+𝛽𝑝,𝑢𝑚𝑑 × 𝑈𝑀𝐷𝑡̃ +𝛽𝑝,𝑖𝑛𝑑1 × 𝐼𝑁𝐷1𝑡̃ +𝛽𝑝,𝑖𝑛𝑑2 × 𝐼𝑁𝐷2𝑡̃ +𝛽𝑝,𝑖𝑛𝑑3

× 𝐼𝑁𝐷3𝑡̃ +𝜖𝑝,𝑡 

 

(39) 

g. Net returns: Net returns are given as 𝑟𝑝,𝑡 = 𝑅𝑝,𝑡 − 𝑐(𝑞𝑡−1). Using the competitive 

equilibrium condition which requires 𝑐(𝑞𝑡−1) = 𝜙𝑝,𝜂,𝑡−1, we compute net returns as 

𝑟𝑝,𝑡 = 𝑅𝑝,𝑡 −𝜙𝑝,𝜂,𝑡−1 where 𝜙𝑝,𝜂,𝑡−1 is the mean of investors’ posterior estimate of skill 

𝜙𝑝 for the period 𝑡. 

h. Mean of investors’ posterior: As the fund’s age evolves, we use the following recursion 

to generate the mean of investors’ posterior estimate of skill, which is a variant of Eq. (8) 

and is derived in Appendix 3: 

𝜙𝑝,𝜂,𝜏 = 𝜙𝑝,𝜂,𝜏−1 +
𝜗𝛼̂,𝜂∗

𝜈 +  𝜏𝜗𝛼̂,𝜂∗
𝛼̂𝑝,𝜂∗,𝑡 , (40) 

where 𝜏 indicates the age of the fund as of time 𝑡. At 𝜏 = 0, we the mean of investors’ prior 

on skill as 0.15% as mentioned in step (b) above. 𝜈 is the reciprocal of the variance of 𝜙𝑝 

and 𝜗𝛼̂,𝜂∗ is the reciprocal of the variance of 𝛼̂𝑝,𝜂∗,𝑡 which is equal to the variance of fund 

specific returns specified in step (d) above when 𝜂∗ = 7. 

i. Fund flow: For each month, we compute flows using the flowing equation:  

𝑓𝑙𝑜𝑤𝑝,𝑡 = 𝑎 + 𝑏 × 𝛼̂𝑝,𝜂∗,𝑡 + 𝜓𝑝,𝑡. (41) 

We estimate a and b from the data, and our estimates are a = -0.00225 and b =.2, using 

𝜂∗ = 7. In the simulation, we draw 𝜓𝑝,𝑡 from a normal distribution with mean zero and 

standard deviation of 0.09 (9%). All these parameters match the corresponding parameters 

in the data.13 

j. Fund exit and entry: If the number of funds in the data in month t is smaller than the 

number of funds in month t-1, the appropriate number of funds exit the simulation sample 

                                                           
13 In principle, we can use Eq. (13) to determine flows according to the model. The linear regression 

specification (14) is consistent with the model derived flow equation in Eq. (13) where  𝑏 is 

determined by the average model covariance. However, the variance of 𝜓𝑝,𝑡 from the data in (41) 

is smaller than the model-implied variance of the noise term. Since the winner of the horse race 

does not depend on the variance of this noise, we use the variance from the data. 
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as well. We sort funds in the simulated sample based on 𝜙𝑝,𝜂,𝑡 and drop the bottom most 

funds equal in number to the actual exits for that month. If the number of funds in the data 

in month t is bigger than the number of funds in month t-1, the appropriate number of funds 

enter the sample.  

We repeat the simulation 100 times.  

2.4 Simulation: Tests and results 

 We first examine the relation between alphas and fund flows under various models. We 

conduct two sets of tests. In the first set of tests, we use true betas and compute  𝛼̂𝑝,𝜂,𝑡 using Eq. 

(6).  In the other set of tests, we estimate betas using the time-series regression (23) with 60 months 

of past data and compute alphas using Eq. (24). 

We first examine the components of measurement error in compute 𝛼̂𝑝,𝜂,𝑡 using the decomposition 

in Eq. (25). Since 𝛼̂𝜂 ≡ 𝜃𝜂 + 𝜀𝜂 where 𝜃𝜂 is the model misspecification error and 𝜀𝜂 is the 

statistical estimation error,  

𝑉𝑎𝑟(𝛼̂𝑝,𝜂) = 𝑉𝑎𝑟(𝜃𝜂) +  𝑉𝑎𝑟(𝜀𝜂) +  𝐶𝑜𝑣(𝜃𝜂 , 𝜀𝜂). (42) 

To estimate the variances in Eq. (42), we first compute the values of 𝜃𝜂 , 𝜖𝜂 for different 𝜂-

factors models in our simulated sample. Using these values, we compute the monthly cross-

sectional variances of 𝜃, 𝜖 as well as their covariance. We then average these values across time to 

get the required estimates. 

Table 5 presents the components of alpha estimation error variance for each asset pricing 

model and 𝜂-factor model. Consider the results when true betas are known. Estimation error 

variance decreases monotonically as we increase 𝜂 from zero to seven for all asset pricing models. 

For example, under the CAPM, estimation error variance is 875 for 𝜂 = 0, which reduces to 625 

for  𝜂 = 0.  

The model misspecification error variance increases monotonically as we move away from 

the true asset pricing model. However, model misspecification error variance is an order of 

magnitude smaller than estimation error variance. For instance, the smallest estimation error 
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variance is 625 and in comparison the largest model misspecification error variance is 1.75, which 

is about 2.8% of 625.  

The total error variance also monotonically declines as we increase the number of factors, 

which is similar to the pattern we see for the estimation error.  Model misspecification error is so 

small in all instances that it hardly moves the needle. Therefore, if we can observe betas without 

error then the J-factor model is the optimal model, as long as each factor increases the 𝑅𝑎𝑑𝑗
2 . 

When betas are not known and we estimate betas using data for 60 months, estimation error 

variance exhibits a U-shaped pattern. It decreases as we go from  𝜂 = 0 to FF3 and then increases 

monotonically as we add more factors. For example, under the CAPM, estimation error variance 

decreases from 874.5 for 𝜂 = 0 to 702.4 for 𝜂 = 3, but then increases to 760.4 for 𝜂 = 7. As we 

saw in Table 3, beta measurement error is relatively large for UMD and the three factor industry 

factors. Consequently, accounting for these factors to compute alpha increases estimation error 

variance. As before, model misspecification error is so small that it does not make difference when 

we compare total estimation error across models.  

We next fit Regression (9) each month and estimate the coefficients and standard errors 

using OLS with month fixed effects. Table 6 reports the results. As we showed analytically, the 

magnitude of the slope coefficients across models would be negatively related to the precision of 

alpha estimates, and we see this pattern in Table 6. Without beta measurement error, the slope 

coefficient increases monotonically as we add factors. For example, under the CAPM, the slope 

increases from 13.93 for 𝜂 = 0 to 19.97 for 𝜂 = 7. The average regression R2 also increases from 

.29 to .39. 

The ordering of the slope coefficients across models when we estimate betas from the data 

is exactly the opposite of the ordering of estimation error variance in Table 5. For all asset pricing 

models, we find the biggest slope coefficients for 𝜂 = 4. The slope coefficients for 𝜂 =  7 are 

comparatively smaller, and the difference is statistically significant. For example, with CAPM, the 

slope coefficient is 17.81 for 𝜂 = 4 and 16.96 for 𝜂 = 7 with a statistically significant difference 

of 0.85. 
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The slope coefficients are almost identical under different true asset pricing models both 

when we know the true beta and when we estimate beta from the data. These results indicate that 

the relation between alpha and flow is not particularly sensitive to the true asset pricing model. 

Therefore, one cannot identify the true asset pricing model using the alpha-flow horse race.  

3. Binary variable regression 

 Our analysis in the last section uses a linear regression for the alpha-fund flow horse race. 

However, Berk and Green (2004) show that the equilibrium relation between alpha and fund flows 

is nonlinear. Because of the non-linearity, BvB transform flows and alpha estimates to binary 

variables and run the horse race with these transformed variables. Specifically, the transformed 

binary variables are defined as follows: 

𝑄𝑥 = {
1 if 𝑥 ≥ 0
−1 if 𝑥 < 0

 , (43) 

where 𝑥 is any random variable. BvB run the following OLS regression: 

𝑄Γ𝑝 = 𝐴𝜂 + 𝐵𝜂 × 𝑄 𝛼̂𝑝,𝜂 + 𝜊𝑝,𝜂 , (44) 

and compare 𝐵̂𝜂 . To relate our analysis based on Regression (9) to that based on Regression (44), 

we first establish the following propositions: 

Proposition 3: Let  𝛼̂𝑝,𝜂1 and 𝛼̂𝑝,𝜂2be the alphas computed with respect to 𝜂1- and 𝜂2-factor models 

using Equation (6). 𝑏̂𝜂1and 𝑏̂𝜂2are the corresponding Regression (9) slope coefficients and 𝐵̂𝜂1and 

𝐵̂𝜂2 are the corresponding Regression (44) slope coefficients. Under the augmented Berk and 

Green model,  

If  𝑏̂𝜂1 > 𝑏̂𝜂2then 𝐵̂𝜂1 > 𝐵̂𝜂2, when the number of funds in the sample is sufficiently large.  

Proof: See Appendix 2. 

Corollary: The ordering of the slope coefficients of Regressions (9) and (44) are identical.  

Proposition 3 and its corollary show that our analysis of the horse race based on Regression 

(9) applies exactly to that of the horse race based on Regression (44). 
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4. Results in Perspective 

BvB, BHO, Agarwal, Green and Ren (2017) and Blocher and Molyboga (2017) report that 

single factor alpha is most highly correlated with fund flows into mutual funds and hedge funds 

among alphas computed with respect to many multifactor models. BvB and some other papers 

conclude that these results indicate that the CAPM is the true asset pricing model. However, BHO 

conclude that these results indicate that investors lack the sophistication to use the most precise 

model to estimate alphas for their investment decision. What are the assumptions that are necessary 

to draw these inferences? Are these assumptions satisfied in the data? 

Our analysis shows that any inference about the true asset pricing model is tenable only if 

inclusion of any of the unpriced factors to compute alphas in Eq. (6) increases alpha estimate 

variance due to model misspecification error more than it reduces statistical estimation error. BvB 

effectively make such an assumption when they assume “if a true risk model exists, any false risk 

model cannot have additional explanatory power.” BvB note that this assumption “rules out the 

possibility that 𝜀𝑖𝑡
𝑐  contains information about managerial ability that is not also contained in 𝜀𝑖𝑡” 

where their notations 𝜀𝑖𝑡 and 𝜀𝑖𝑡
𝑐  denote alpha estimation errors with the true asset pricing model 

(i.e.  𝛼̂𝑝,𝐾 estimated using the K-factor model)  and with any other multifactor model  

(i. e.  𝛼̂𝑝,𝜂 ∀ 𝜂 ≠ 𝐾 ), respectively.  

Is this assumption empirically tenable? Our simulation shows for the parameters in the 

data, the precision of alpha estimate is insensitive to the true asset pricing model. For example, if 

CAPM were the true model but we estimate alphas using the seven-factor model, the increase in 

model misspecification error is an order of magnitude smaller than the decrease in estimation error 

compared with the error in  𝛼̂𝑝,𝐾. In fact, the winner of the horse race does not depend on the true 

asset pricing model both if we know the true betas and if we estimated betas from the data. 

Therefore, any inference about the true asset pricing model based on alpha-fund flow horse race is 

empirically untenable. 

Regarding inferences about investor sophistication, an important question is, what is the 

appropriate benchmark that sophisticated investors would use? BHO hypothesize that 

sophisticated investors would use the J-factor model, a model that includes all priced and unpriced 
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common factors. Our analysis shows that this hypothesis ignores the potential contribution of 

model misspecification error and the effect of measurement error in factor betas.  

Our simulation results indicate that J-factor model indeed wins out horse race regardless 

of the true asset pricing model if betas are known. However, when we estimate betas with 60 

months of data, alphas are estimated more precisely with the three factor model than with the seven 

factor model. Therefore, in this case the appropriate benchmark for assessing investor 

sophistication is the four factor model rather than the seven factor model. The evidence in BHO 

that market model alphas win the horse race indicates that investors use this alpha to inform their 

investment decision rather than the most precise three factor alpha. Therefore, their conclusion 

that investors are not sophisticated enough to use the most precise estimate of alpha to inform their 

mutual fund investment decisions is empirically tenable. 

5. Conclusion 

Investors reveal their preferences for mutual funds through investments in or withdrawals 

from them. Since non-satiated investors prefer more abnormal returns to less, investors’ fund flows 

reveal their views on abnormal returns that they can earn from their investments. Because flows 

reveal investors’ perceptions, the recent literature has proposed that a comparison of relations 

between fund flows and alphas measured with respect to a number of models can be used to 

identify the best asset pricing model and also to assess investor sophistication.  

We show analytically that the empirical tenability of any inferences we draw based on such 

flow-alpha horse race critically depend on the sources of measurement error in alphas estimated 

under various models. For instance, we show that we can draw reliable inferences about asset 

pricing models only if the dominant source of error in alphas is due to the misspecification of the 

true asset pricing model. However, we find that the true asset pricing model has no effect on the 

ordering of the flow-alpha relations in our simulations with parameters estimated form the data. 

These findings indicate that asset pricing model misspecification error is a trivial of alpha 

estimation error in the data. Therefore, any inference about the true asset pricing model based on 

the flow-alpha horse race is empirically untenable.  
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Table 1: Summary statistics 

This table presents the summary statistics for the sample of funds included in the sample. The 

number of fund-month observations is 404,042. The table first computes the respective statistics 

across funds each month and reports the averages over the entire sample period. The sample period 

is from January, 1990 to June, 2017. 

 Mean Std. Dev. Median 

Number of funds each month 1224   

Flow (%) 0.25 10.8 -0.42 

TNA ($ mn) 1120.4 4507.4 223.6 

Age (months) 376.8 306.6 299.2 

Expense Ratio (%) 1.22 0.45 1.19 

Load Dummy 0.49 0.50 0 

Ret. Volatility (t-1,t-12) 4.7 2.3 4.2 
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Table 2: Factor model R2 

This table fits the following regression: 

(𝑟𝑝,𝑡 − 𝑟𝑓,𝑡) = 𝛼𝑝,𝜂 +∑𝛽𝑘,𝑝 𝐹𝑘,𝑡 + 𝑒𝑝,𝜂,𝑡.

𝜂

𝑘=1

          

Where 𝑟𝑝,𝑡, 𝑟𝑓,𝑡 and 𝐹𝑘,𝑡  are fund return, risk-free rate and realization of factor k in month t, 

respectively. For each month 𝑡, the regression is fitted from 𝑡 − 60 to 𝑡 − 1. The table reports the 

cross-sectional averages of time-series means of adjusted R2 of the OLS regressions under each 

model. For market-adjusted and benchmark-adjusted returns we compute this metric as 1 −

(∑(𝑟𝑖𝑡 − 𝑟𝑚𝑘𝑡)
2 ∑(𝑟𝑖𝑡 − 𝑟̅𝑖)

2⁄ ), 1 − (∑(𝑟𝑖𝑡 − 𝑟𝑏/𝑚)
2
∑(𝑟𝑖𝑡 − 𝑟̅𝑖)

2⁄ )  using full sample of returns 

for each. Benchmark is the fund benchmark identified by Cremers and Petajisto (2009).  The 

sample period is January, 1990 to June, 2017. 

Model 

Adj. R2 

Regression 1 − (
 𝑉𝑎𝑟(𝛼𝑝,𝜂)

𝑉𝑎𝑟(𝑟𝑝)
⁄ ) 

Market Adj. Return 0.774 0.761 

Benchmark Adj. Return 0.870 0.824 

Market Model  0.820 0.829 

FF3  0.892 0.883 

FFC4  0.901 0.883 

FFC4 + 3 IND  0.910 0.884 
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Table 3: Measurement Errors in betas 

This table reports the slope coefficients from the following cross-sectional regressions: 

𝛽̂𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

= 𝑎𝑡 + 𝑏𝑡 × 𝛽̂𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡 + 𝑒𝑝,𝑡, 

where for each fund f, 𝛽̂𝑝,𝑘,𝑡
𝑓𝑢𝑡𝑢𝑟𝑒

 and 𝛽̂𝑝,𝑘,𝑡
𝑝𝑎𝑠𝑡

 are estimated using time-series regressions with data 

from t to t+11, and t-1 to t-60, respectively. All betas are estimated with univariate time-series 

regressions. The above regression is fitted each month for betas with respect to each factor and the 

table reports time-series averages of the slope coefficients. Standard errors from the second stage 

of Fama-MacBeth regressions are adjusted for serial correlation using Newey-West correction 

with lag length of 11 months. Sample period for these regressions is Jan-1990 to Jul-2016. ***, 

**, * indicate statistical significance at the 1%, 5%, and 10% levels respectively. 

 

Betas Average 𝑏𝑡 Std. Err. 

Market 0.821*** 0.07 

SMB 0.876*** 0.03 

HML 0.765*** 0.05 

UMD 0.409*** 0.08 

IND1 0.356*** 0.09 

IND2 0.362*** 0.09 

IND3 0.090 0.10 
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Table 4: Simulation Parameters 

This table shows the parameters used in generating simulated returns and flows during 1990-2017. 

We generate net returns each month using the following seven-factor model: 

𝑟𝑝,𝑡 = 𝜙𝑝 − 𝜙𝑝,𝜂,𝑡−1 + 𝐸
𝑚𝑜𝑑𝑒𝑙(𝑟𝑝) + 𝛽𝑝,𝑚 × (𝑚𝑘𝑡 − 𝑟𝑓)𝑡̃ +𝛽𝑝,𝑠𝑚𝑏 × 𝑆𝑀𝐵𝑡̃ + 𝛽𝑝,ℎ𝑚𝑙 × 𝐻𝑀𝐿𝑡̃

+𝛽𝑝,𝑢𝑚𝑑 × 𝑈𝑀𝐷𝑡̃ +𝛽𝑝,𝑖𝑛𝑑1 × 𝐼𝑁𝐷1𝑡̃ +𝛽𝑝,𝑖𝑛𝑑2 × 𝐼𝑁𝐷2𝑡̃ +𝛽𝑝,𝑖𝑛𝑑3 × 𝐼𝑁𝐷3𝑡̃

+𝜖𝑝,𝑡 

where 𝜙𝑝 is the fund manager skill, 𝜙𝑝,𝜂,𝑡−1 is the mean of investors’ posterior estimate of skill 

𝜙𝑝 for the period 𝑡. Based on a fund’s age 𝜏 as of time period 𝑡, we use the recursion 𝜙𝑝,𝜂,𝜏 =

𝜙𝑝,𝜂,𝜏−1 + 𝛼̂𝑝,𝜂∗,𝑡 (𝜗𝛼̂,𝜂∗ (𝜈 +  𝜏𝜗𝛼̂,𝜂∗)⁄ ) to update investors’ posterior mean of skill. At 𝜏 = 0, we 

set the mean of investors’ prior on skill 𝜙0 to be same as the mean of 𝜙𝑝. The variables under 𝑡𝑖𝑙𝑑𝑒 

are demeaned realizations of the following factors: market, SMB, HML, UMD, and three industry 

factors and 𝛽s are the corresponding factor sensitivities. We generate monthly flow as: 

𝑓𝑙𝑜𝑤𝑝,𝑡 = 𝑎 + 𝑏 × 𝛼̂𝑝,𝜂∗,𝑡 + 𝜓𝑝,𝑡, 

where 𝛼̂𝑝,𝜂∗,𝑡 is computed using the above seven factors as 𝑟𝑝,𝑡 − ∑ 𝛽𝑝,𝑘 × 𝐹𝑘,𝑡
7
𝑘=1 . All randomly 

drawn parameters are generated from a Normal distribution with means and standard deviations 

shown in the table. 

Panel A: Randomly drawn parameters 

Parameter Mean Standard Deviation 

𝜙𝑝 𝜙0 =0.15% 1/√𝜈=0.2% 

𝛽𝑚𝑘𝑡 1 0.154 

𝛽𝑠𝑚𝑏 0.25 0.328 

𝛽ℎ𝑚𝑙 0 0.262 

𝛽𝑢𝑚𝑑 0 0.096 

𝛽𝐼𝑁𝐷1 0 0.036 

𝛽𝐼𝑁𝐷2 0 0.036 

𝛽𝐼𝑁𝐷3 0 0.024 

𝜖 0 1/√𝜗𝛼̂,𝜂∗=0.025 (2.5%) 

𝜓 0 0.09 (9%) 

Panel B: Fixed parameters 

Parameter Value 

𝑎 -0.00225 

𝑏 0.2 

𝜂∗ 7 factor model 
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Table 5: Measurement error components in simulated sample 

This table shows the empirical estimates of various components in the variance decomposition of measurement error in 𝛼̂ from Eq (32). 

Each month, in the simulated sample, we compute the model misspecification error (𝜃) and statistical estimation error (𝜖) for various 

combinations of true asset pricing models (K=0, 1, 3) and estimation models (𝜂=0, 1, 3, 4, 7) using the analytical expressions from Eq. 

(31). From these values, we compute the monthly cross-sectional variances and covariance and then average them across time and across 

50 simulation samples and report the values scaled by 10−6. Columns (1), (2), (3) of each Panel in the table below show the variances 

of estimation error, misspecification error and the covariance of the two respectively. Panel A shows the variance estimates when we 

use true betas of the funds to compute  𝛼̂𝜂 in which case the beta measurement error part drops in the estimation error component. And 

panel B shows the variance estimates where we use 60 month rolling window estimates of  𝛽̂ to compute  𝛼̂𝜂 in which case the 

measurement error in betas shows up as part of column (1). The expressions we use to compute 𝜃, 𝜖 are: 

𝜃 = −∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)
𝜂
𝑘=𝐾+1  if 𝜂 ≥ 𝐾, 𝜃 = ∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝐾

𝑘=𝜂+1
 if 𝜂 < 𝐾 and 𝜖 = ∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 

𝐽
𝑘=𝜂+1 + ∑ (𝛽̂𝑘,𝑝,𝑡 − 𝛽𝑘,𝑝)

𝜂
𝑘=1 𝐹𝑘,𝑡 + 𝜉𝑝,𝑡. 

Betas used to estimate alphas are: Panel A: True Betas  Panel B:  𝛽̂s from 60 month rolling regressions 

  𝜎𝜖
2 𝜎𝜃

2 𝐶𝑜𝑣(𝜃, 𝜖) (1)+(2)+(3)  𝜎𝜖
2 𝜎𝜃

2 𝐶𝑜𝑣(𝜃, 𝜖) (1)+(2)+(3) 

  (1) (2) (3) 
 

 

(1) (2) (3) 
 

True asset pricing Model (𝐾): Alpha Estimated Using (𝜂):         

No-beta risk premium model 

(K=0) 

Mkt adj. ret. 875.2 0 0 875.2  874.5 0 0 874.5 

Market model 832.3 1.151 0.005 833.5  833.3 1.148 0.005 834.5 

FF3 661.4 1.494 0.003 662.9  702.4 1.49 0.005 703.9 

FFC4 640.2 1.743 -0.001 642.0  717.0 1.739 -0.001 718.7 

FFC4+3 IND 625.0 1.755 -0.001 626.7  760.9 1.751 0.007 762.7 
           

CAPM 

(K=1) 

Mkt adj. ret. 875.2 1.151 -0.110 876.3  874.5 1.148 -0.103 875.6 

Market model 832.3 0 0 832.3  833.3 0 0 833.3 

FF3 661.4 0.350 -0.002 661.8  702.4 0.35 -0.006 702.8 

FFC4 640.2 0.602 -0.005 640.8  717.0 0.601 -0.010 717.6 
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FFC4+3 IND 625.0 0.614 -0.004 625.6  760.9 0.613 -0.008 761.6 
           

FF3 

(K=3) 

Mkt adj. ret. 875.2 1.494 -0.052 876.7  874.5 1.49 -0.039 876.0 

Market model 832.3 0.350 0.058 832.7  833.3 0.35 -0.004 833.7 

FF3 661.4 0 0 661.4  702.4 0 0 702.4 

FFC4 640.2 0.252 -0.004 640.5  717.0 0.252 -0.005 717.2 

FFC4+3 IND 625.0 0.264 -0.002 625.3  760.9 0.263 -0.002 761.2 
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Table 6: Flow-Performance relation in simulated sample  

This table presents univariate flow-performance regression results in the simulated sample. Columns (1), (2) and (3) in each of panels 

A and B report the results with true expected returns generated under No-beta risk premium (NBRP), CAPM, and FF3 models. The 

alphas which are the independent variables are computed with respect to the models indicated in the first column. Panel A shows the 

results using true betas to compute these alphas while panel B shows the results with 𝛽̂s estimated using the prior month returns. Monthly 

flow is simulated in the sample as 𝑓𝑙𝑜𝑤𝑝.𝑡 = −0.00225 + 0.2 ∗ 𝛼̂𝑝,𝜂∗=7,𝑡 + 𝜓𝑝,𝑡 which is the dependent variable. The table presents the 

average value of slope coefficients multiplied by 100 with flows as the dependent variable and alphas as independent variables across 

50 simulated samples.  

 Panel A: True betas used to estimate alphas  Panel B: 60 month rolling window  𝛽̂s used to estimate alphas 

 (1)  (2)  (3)  (1)  (2)  (3) 

True asset pricing model (K): NBRP model  CAPM  FF3  NBRP model  CAPM  FF3 

 Coef/SE R2  Coef/SE R2  Coef/SE R2  Coef/SE R2  Coef/SE R2  Coef/SE R2 

Alpha Estimated Using (𝜂):                  

Market Adjusted Ret 13.949*** 0.294  13.935*** 0.293  13.929*** 0.293  14.517*** 0.339  14.499*** 0.339  14.494*** 0.339 

 (0.445)   (0.442)   (0.440)   (0.624)   (0.623)   (0.622)  

Market model 14.691*** 0.305  14.686*** 0.305  14.679*** 0.305  15.258*** 0.352  15.252*** 0.351  15.249*** 0.351 

 (0.462)   (0.460)   (0.458)   (0.674)   (0.673)   (0.673)  

FF3 18.753*** 0.370  18.753*** 0.369  18.753*** 0.369  17.793*** 0.392  17.790*** 0.392  17.791*** 0.391 

 (0.541)   (0.539)   (0.535)   (0.694)   (0.694)   (0.693)  

FFC4 19.454*** 0.380  19.456*** 0.380  19.456*** 0.380  17.810*** 0.392  17.807*** 0.392  17.808*** 0.392 

 (0.589)   (0.588)   (0.584)   (0.688)   (0.688)   (0.687)  

FFC4+3 IND 19.970*** 0.388  19.973*** 0.388  19.973*** 0.388  16.963*** 0.379  16.959*** 0.378  16.958*** 0.378 

 (0.603)   (0.601)   (0.597)   (0.670)   (0.670)   (0.669)  

Coefficient Difference Test                  

FFC4 - (FFC4+3 IND) -0.516***   -0.517***   -0.517***   0.847***   0.849***   0.849***  

 (0.082)   (0.082)   (0.083)   (0.171)   (0.171)   (0.171)  

FFC4 - True Asset Pricing Model 5.505***   4.770***   0.703***   3.294***   2.556***   0.017  

 (0.302)   (0.278)   (0.116)   (0.335)   (0.315)   (0.144)  
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Appendix 1: 

This appendix derives the results presented in section 1.4 of the paper. For expositional 

convenience, we set the risk-free rate to zero. 

Let returns be generated by a single factor model as shown in equation (16). The true model of 

expected returns is either a no-beta risk premium model in equation (17) or CAPM in equation 

(18). 𝛼̂ is estimated using either a market adjustment as shown in equation (19) or a market model 

adjustment as shown in equation (20). 

In the cross-section of funds, the following hold true: 

𝑐𝑜𝑣(𝛽, 𝜉) = 0 

𝑐𝑜𝑣(𝛽̂, 𝜉) = 0 

𝑐𝑜𝑣(𝛽̂ − 𝛽, 𝜉) = 0, 

(𝐴. 1.1) 

 

where 𝛽 represents true beta of a fund, 𝛽̂ represents the estimated beta of the fund, 𝛽̂ − 𝛽 is the 

measurement error in estimated beta, and 𝜉 represents the fund specific returns. 

We also have, by definition: 

𝑐𝑜𝑣(𝛽̂ − 𝛽, 𝛽) = 0 (𝐴. 1.2) 

 

From the two models of expected returns and two estimators, we have the following four cases. 

Case 1: Market adjustment when the no-beta risk model is true 

From equations (16), (17), (19): 

𝛼̂𝑝,0 = 𝑟𝑝,𝑡 − 𝑟𝑚,𝑡 = 𝛼𝑝 + 𝐸[𝑟𝑚] + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡 − 𝑟𝑚,𝑡 

= 𝛼𝑝 + 𝐸[𝑟𝑚] + 𝛽𝑝 × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 − 𝑟𝑚,𝑡 

= 𝛼𝑝 + 𝑢𝑡   where 𝑢𝑡 = (𝛽𝑝 − 1) × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 

Therefore, the cross-sectional variance of 𝑢𝑡 after using the results in (𝐴. 1.1) will be: 

𝜎𝑢
2 |𝑟𝑚,𝑡 = (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚])

2
× 𝑣𝑎𝑟(𝛽𝑝 − 1|𝑟𝑚,𝑡) + 𝜎𝜉𝑝,𝑡

2 | 𝑟𝑚,𝑡 

= (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚])
2
× 𝜎𝛽𝑝

2 |𝑟𝑚,𝑡 + 𝜎𝜉𝑝,𝑡
2 |𝑟𝑚,𝑡 

Since the true betas and the fund specific returns are drawn from identical distributions across 

funds, we can drop the subscript p to arrive at: 
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𝜎𝑢
2|𝑟𝑚,𝑡 = (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚])

2
× 𝜎𝛽

2|𝑟𝑚,𝑡 + 𝜎𝜉
2|𝑟𝑚,𝑡 

(𝐴. 1.3) 

 

Case 2: Market model adjustment (i.e. CAPM) when the no-beta risk model is true 

From equation (20): 

𝛼̂𝑝,1 = 𝑟𝑝,𝑡 − 𝛽̂𝑝 × 𝑟𝑚,𝑡 − (1 − 𝛽̂𝑝) × 𝑟𝑓 

= 𝛼𝑝 + 𝐸[𝑟𝑚] + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡 − 𝛽̂𝑝𝑟𝑚,𝑡 − (1 − 𝛽̂𝑝) × 𝑟𝑓 from equations (13), (14) 

= 𝛼𝑝 + 𝐸[𝑟𝑚] + 𝛽𝑝 × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 − 𝛽̂𝑝𝑟𝑚,𝑡 − (1 − 𝛽̂𝑝) × 𝑟𝑓 

= 𝛼𝑝 + 𝑢𝑡  where 𝑢𝑡 = (1 − 𝛽𝑝) × 𝐸(𝑟𝑚) − (𝛽̂𝑝 − 𝛽𝑝) × 𝑟𝑚,𝑡 − (1 − 𝛽̂𝑝) × 𝑟𝑓 + 𝜉𝑝,𝑡 

Using (𝐴. 1.1), (𝐴. 1.2), and the following two results 

𝐶𝑜𝑣(1 − 𝛽𝑝, 1 − 𝛽̂𝑝) = 𝑣𝑎𝑟(𝛽𝑝) 

𝐶𝑜𝑣(𝛽̂𝑝 − 𝛽𝑝, 1 − 𝛽̂𝑝) = −𝑣𝑎𝑟(𝛽̂𝑝 − 𝛽𝑝), 

the cross-sectional variance of 𝑢𝑡 will be: 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝐸(𝑟𝑚) × (𝐸(𝑟𝑚) − 𝑟𝑓) × 𝜎𝛽

2|𝑟𝑚,𝑡 + 𝑟𝑚,𝑡 × (𝑟𝑚,𝑡 − 𝑟𝑓)

× 𝜎
𝛽̂−𝛽
2 |𝑟𝑚,𝑡 + 𝑟𝑓

2 × 𝜎
𝛽̂
2| 𝑟𝑚,𝑡 + 𝜎𝜉

2|𝑟𝑚,𝑡 
(𝐴. 1.4) 

 

When the risk-free rate is set to zero: 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝐸(𝑟𝑚)

2 × 𝜎𝛽
2|𝑟𝑚,𝑡 + 𝑟𝑚,𝑡

2 × 𝜎
𝛽̂−𝛽
2 |𝑟𝑚,𝑡 + 𝜎𝜉

2|𝑟𝑚,𝑡 (𝐴. 1.5) 

 

Case 3: Market adjustment when CAPM is true 

From equations (16), (18), (19): 

𝛼̂𝑝,0 = 𝛼 + 𝑟𝑓 + 𝛽𝑝 × (𝐸[𝑟𝑚] − 𝑟𝑓) + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡 − 𝑟𝑚,𝑡 

= 𝛼 + 𝑟𝑓 + 𝛽𝑝 × (𝐸[𝑟𝑚] − 𝑟𝑓) + 𝛽𝑝 × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 − 𝑟𝑚,𝑡 

= 𝛼 + 𝑢𝑡 where 𝑢𝑡 = −(1 − 𝛽𝑝) × (𝑟𝑚,𝑡 − 𝑟𝑓) + 𝜉𝑝,𝑡 

 

Using (𝐴. 1.1), the cross-sectional variance of 𝑢𝑡 is: 
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𝜎𝑢
2 |𝑟𝑚,𝑡 = (𝑟𝑚,𝑡 − 𝑟𝑓)

2
× 𝜎𝛽𝑝

2 | 𝑟𝑚,𝑡 + 𝜎𝜉𝑝,𝑡
2 |𝑟𝑚,𝑡 (𝐴. 1.6) 

 

Dropping the subscript p since betas and fund specific returns are drawn from identical 

distributions across funds and with risk free rate set to zero, we get: 

𝜎𝑢
2|𝑟𝑚,𝑡 = 𝑟𝑚,𝑡

2  × 𝜎𝛽
2|𝑟𝑚,𝑡 + 𝜎𝜉

2|𝑟𝑚,𝑡 (𝐴. 1.7) 

 

Case 4: Market model adjustment when CAPM is true 

From (16), (18), (20): 

𝛼̂𝑝,1 = 𝛼 + 𝑟𝑓 + 𝛽𝑝 × (𝐸[𝑟𝑚] − 𝑟𝑓) + 𝛽𝑝 × 𝑓𝑡 + 𝜉𝑝,𝑡 − [𝑟𝑓 + 𝛽̂𝑝(𝑟𝑚,𝑡 − 𝑟𝑓)] 

= 𝛼 + 𝑟𝑓 + 𝛽𝑝 × (𝐸[𝑟𝑚] − 𝑟𝑓) + 𝛽𝑝 × (𝑟𝑚,𝑡 − 𝐸[𝑟𝑚]) + 𝜉𝑝,𝑡 − [𝑟𝑓 + 𝛽̂𝑝(𝑟𝑚,𝑡 − 𝑟𝑓)] 

= 𝛼 + 𝑢𝑡 where 𝑢𝑡 = −(𝛽̂𝑝 − 𝛽𝑝) × (𝑟𝑚,𝑡 − 𝑟𝑓) + 𝜉𝑝,𝑡   

 

Using (𝐴. 1.1), the cross-sectional variance of 𝑢𝑡 is: 

𝜎𝑢
2 |𝑟𝑚,𝑡 = (𝑟𝑚,𝑡 − 𝑟𝑓)

2
× 𝜎

𝛽̂𝑝−𝛽𝑝

2 | 𝑟𝑚,𝑡 + 𝜎𝜉𝑝,𝑡
2 |𝑟𝑚,𝑡 (𝐴. 1.8) 

 

After dropping subscript p and setting risk free rate to zero, we get: 

𝜎𝑢
2 |𝑟𝑚,𝑡 = 𝑟𝑚,𝑡

2 × 𝜎
𝛽̂−𝛽
2 | 𝑟𝑚,𝑡 + 𝜎𝜉

2|𝑟𝑚,𝑡 (𝐴. 1.9) 
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Appendix 2:  

This appendix proves Proposition 3. 

Denote 

𝛼̂𝑝,𝜂 = 𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂 , (𝐴. 2.1) 

where 𝛼̂𝑝,𝜂∗ is the alpha estimated using the most optimal 𝜂∗-factor model. Under the rational 

expectations equilibrium of Berk, Green (2004), flow positively covaries with 𝛼̂𝑝,𝜂∗,𝑡 and is 

uncorrelated with the noise term 𝑣𝑝,𝜂. 

Under the model of Berk, Green (2004), 𝛼̂𝑝,𝜂1, 𝛼̂𝑝,𝜂2 are normally distributed with mean zero and 

are therefore symmetric around zero. Therefore: 

Pr(𝑄𝑝,𝜂 = −1) = Pr(𝑄𝑝,𝜂 = 1) = .5 for 𝜂 = 𝜂1, 𝜂2, 

𝐸(𝑄𝑝,𝜂1) = 𝐸(𝑄𝑝,𝜂2) = 0 , and 

𝑉𝑎𝑟(𝑄𝑝,𝜂1) = 𝑉𝑎𝑟(𝑄𝑝,𝜂2) = 1. 

(𝐴. 2.2) 

 

It also follows from the definition in (𝐴. 2.1) that: 

𝐸(𝑣𝑝,𝜂) = 0 (𝐴. 2.3) 

 

Consider the following OLS regressions from (11) and (34): 

Γ𝑝 = 𝑎𝜂 + 𝑏𝜂𝛼̂𝑝,𝜂 + 𝜔𝑝,𝜂 

𝑄Γ𝑝 = 𝐴𝜂 + 𝐵𝜂𝑄𝑝,𝜂 + 𝜊𝑝,𝜂 

From Regression (11), after using 𝐶𝑜𝑣(Γ𝑝, 𝑣𝑝,𝜂) = 0, we get: 

𝑏𝜂 =
𝑐𝑜𝑣(Γ𝑝, 𝛼̂𝑝,𝜂)

𝑣𝑎𝑟(𝛼̂𝑝,𝜂)
=

𝑐𝑜𝑣(Γ𝑝, 𝛼̂𝑝,𝜂∗)

𝑣𝑎𝑟(𝛼̂𝑝,𝜂∗) + 𝑣𝑎𝑟(𝑣𝑝,𝜂)
 (𝐴. 2.4) 

 

Given that 𝑏̂𝜂1 > 𝑏̂𝜂2. Therefore, from (𝐴. 2.4) we get: 

𝑣𝑎𝑟(𝑣𝑝,𝜂1) < 𝑣𝑎𝑟(𝑣𝑝,𝜂2) (𝐴. 2.5) 
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From Regression (34), after using the result in (𝐴. 2.2), we get: 

𝐵𝜂 =
𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂)

𝑉𝑎𝑟(𝑄𝑝,𝜂)
=  𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂) 

(𝐴. 2.6) 

 

To evaluate this covariance term, we use the law of total covariance which states: 

𝑐𝑜𝑣(𝑋, 𝑌) = 𝐸(𝑐𝑜𝑣(𝑋, 𝑌|𝑍)) + 𝑐𝑜𝑣(𝐸(𝑋|𝑍), 𝐸(𝑌|𝑍)) (𝐴. 2.7) 

 

Using (𝐴. 2.7), we can write: 

𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂)

= 𝐸 (𝑐𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)) + 𝑐𝑜𝑣 (𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗) , 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)) 
(𝐴. 2.8) 

 

Since Γ𝑝 is independent of the noise part of 𝛼̂𝑝,𝜂, the conditional covariance 𝑐𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂|𝑄𝑝,𝜂∗) 

will be zero on average. Hence the first term on the RHS of (𝐴. 2.8) will be zero. Expanding the 

second term in (𝐴. 2.8), we get: 

𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂)

= 𝐸 [𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗) × 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)] − 𝐸 [𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗)]

× 𝐸[𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)] 

(𝐴. 2.9) 

 

The two terms in (𝐴. 2.9) can further be expanded as: 

𝐸 [𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗) × 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)] = 𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = 1) × 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) × Pr(𝑄𝑝,𝜂∗ =

1) + 𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = −1) × 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1) × Pr(𝑄𝑝,𝜂∗ = −1), and 

𝐸 [𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗)] × 𝐸[𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗)] = {𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = 1) × Pr(𝑄𝑝,𝜂∗ = 1) +

𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = −1) × Pr(𝑄𝑝,𝜂∗ = −1)} × {𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) × Pr(𝑄𝑝,𝜂∗ = 1) +

𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1) × Pr(𝑄𝑝,𝜂∗ = −1)}  
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Substituting these into (𝐴. 2.9), using 1 − Pr(𝑄𝑝,𝜂∗ = 1) = Pr(𝑄𝑝,𝜂∗ = −1), and rearranging the 

terms yields: 

𝐶𝑜𝑣 (𝑄Γ𝑝 , 𝑄𝑝,𝜂)

= {𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = 1) − 𝐸 (𝑄Γ𝑝|𝑄𝑝,𝜂∗ = −1)}

× {𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1)} × Pr(𝑄𝑝,𝜂∗ = 1)

× Pr(𝑄𝑝,𝜂∗ = −1) 

(𝐴. 2.10) 

 

From (𝐴. 2.6) and (𝐴. 2.10) we can see that comparing coefficients 𝐵𝜂1, 𝐵𝜂2 reduces to comparing 

{𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1)} for 𝜂 = 𝜂1 & 𝜂2, since 𝜂∗ is same across the two 

models. 

By definition, this term can be expressed as: 

𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂|𝑄𝑝,𝜂∗ = −1)

= Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂 ≥ 0|𝛼̂𝑝,𝜂∗ ≥ 0)

− Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂 < 0|𝛼̂𝑝,𝜂∗ ≥ 0)

− Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂 ≥ 0|𝛼̂𝑝,𝜂∗ < 0)

+ Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂 < 0|𝛼̂𝑝,𝜂∗ < 0) 

  

(𝐴. 2.11) 

Where the conditional probabilities are defined as: 

Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂 ≥ 0|𝛼̂𝑝,𝜂∗ ≥ 0)

= ∫ Pr(𝛼̂𝑝,𝜂∗ ≥ −𝑣𝑝,𝜂|𝛼̂𝑝,𝜂∗) × 𝑓(𝛼̂𝑝,𝜂∗|𝛼̂𝑝,𝜂∗ ≥ 0) × 𝑑𝛼̂𝑝,𝜂∗
∞

0

 
(𝐴. 2.12) 

 

with 𝑣𝑝,𝜂|𝛼̂𝑝,𝜂∗ distributed as Normal with mean zero. 

We get similar expressions for the remaining three terms on the RHS of equation (𝐴. 2.11). 

When 𝑋~𝑁(0, 𝜎2), the following definitions apply: 

Pr(𝑋 ≤ 𝑎) = 𝐹(𝑎) =
1

2
× [1 + erf (

𝑎 − 𝜇

𝜎√2
)] =

1

2
× [1 + erf (

𝑎

𝜎√2
)] 

Pr(𝑋 ≥ 𝑎) = 1 − 𝐹(𝑎) =
1

2
× [1 − erf (

𝑎 − 𝜇

𝜎√2
)] =

1

2
× [1 − erf (

𝑎

𝜎√2
)] 

(𝐴. 2.13) 
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Where erf (𝑥) is the error function given by: 

erf(𝑥) =
2

√𝜋
×∫ 𝑒−𝑡

2
𝑑𝑡

𝑥

0

 

 

This is an odd function with erf(−𝑥) = −erf (𝑥) and is monotonically increasing in its argument 

𝑥. From these two properties and the definitions in (𝐴. 2.13), we can infer the following: 

Pr(𝑋 ≥ 𝑎)  is {
decreasing with 𝜎 if 𝑎 < 0
increasing with 𝜎 if 𝑎 > 0

 

Pr(𝑋 ≤ 𝑎)  is {
increasing with 𝜎 if 𝑎 < 0
decreasing with 𝜎 if 𝑎 > 0

 

(𝐴. 2.14) 

 

From (𝐴. 2.5), we have 𝜎𝑣𝑝,𝜂1 < 𝜎𝑣𝑝,𝜂2. Therefore, from (𝐴. 2.12) and (𝐴. 2.14), we can see that: 

Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂1 ≥ 0|𝛼̂𝑝,𝜂∗ ≥ 0) > Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂2 ≥ 0|𝛼̂𝑝,𝜂∗ ≥ 0), 

Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂1 < 0|𝛼̂𝑝,𝜂∗ < 0) > Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂2 < 0|𝛼̂𝑝,𝜂∗ < 0), 

−Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂1 < 0|𝛼̂𝑝,𝜂∗ ≥ 0) > −Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂2 < 0|𝛼̂𝑝,𝜂∗ ≥ 0), 

− Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂1 ≥ 0|𝛼̂𝑝,𝜂∗ < 0) > −Pr(𝛼̂𝑝,𝜂∗ + 𝑣𝑝,𝜂2 ≥ 0|𝛼̂𝑝,𝜂∗ < 0) 

(𝐴. 2.15) 

 

Substituting (𝐴. 2.15) into (𝐴. 2.11) gives: 

𝐸(𝑄𝑝,𝜂1|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂1|𝑄𝑝,𝜂∗ = −1) > 𝐸(𝑄𝑝,𝜂2|𝑄𝑝,𝜂∗ = 1) − 𝐸(𝑄𝑝,𝜂2|𝑄𝑝,𝜂∗ =

−1)  
(𝐴. 2.16) 

 

Finally, substituting this into (𝐴. 2.10) and using the definition of 𝐵𝜂 from (𝐴. 2.6), we get 𝐵𝜂1 >

𝐵𝜂2. Q.E.D.  
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Appendix 3:  

This appendix derives a recursive relation for cost function in (11) starting from Eq. (8). 

From (8), the posterior mean of investors’ estimate of gross skill 𝜙𝑝
𝐾 is: 

𝜙𝑝,𝜂,𝑡
𝐾 =

𝜈 𝜙0 + 𝑡𝜗𝛼̂,𝜂 𝑋̅𝑝,𝜂,𝑡 

𝜈 +  𝑡𝜗𝛼̂,𝜂
, (𝐴. 3.1) 

where 𝑋𝑝,𝜂,𝑡 = 𝛼̂𝑝,𝜂,𝑡 + 𝑐(𝑞𝑝,𝑡−1). 

Under the competitive equilibrium of Berk, Green (2004) we have: 

𝑐(𝑞𝑝,𝑡) = 𝜙𝑝,𝜂,𝑡
𝐾  (𝐴. 3.2) 

 

Rewriting 𝑡𝑋̅𝑝,𝜂,𝑡 as (𝑡 − 1)𝑋̅𝑝,𝜂,𝑡−1 + 𝑋𝑝,𝜂,𝑡 which can further be written as (𝑡 − 1)𝑋̅𝑝,𝜂,𝑡−1 +

𝛼̂𝑝,𝜂,𝑡 + 𝑐(𝑞𝑝,𝑡−1), Eq. (A.3.1) becomes: 

𝜙𝑝,𝜂,𝑡
𝐾 =

𝜈 𝜙0 + (𝑡 − 1)𝜗𝛼̂,𝜂 𝑋̅𝑝,𝜂,𝑡−1 + 𝜗𝛼̂,𝜂𝑐(𝑞𝑝,𝑡−1) 

𝜈 +  𝑡𝜗𝛼̂,𝜂
+

𝜗𝛼̂,𝜂

𝜈 +  𝑡𝜗𝛼̂,𝜂
𝛼̂𝑝,𝜂,𝑡 . (𝐴. 3.3) 

 

From (A.3.2), the competitive equilibrium condition for period 𝑡 − 1 will be 𝑐(𝑞𝑝,𝑡−1) =

𝜙𝑝,𝜂,𝑡−1
𝐾 , where 𝜙𝑝,𝜂,𝑡−1

𝐾 =
𝜈 𝜙0+(𝑡−1)𝜗𝛼̂,𝜂 𝑋̅𝑝,𝜂,𝑡−1 

𝜈+(𝑡−1)𝜗𝛼̂,𝜂
 is given by (A.3.1) for 𝑡 − 1. Therefore, 

𝜙𝑝,𝜂,𝑡
𝐾 =

[𝜈 + (𝑡 − 1)𝜗𝛼̂,𝜂]𝜙𝑝,𝜂,𝑡−1
𝐾 + 𝜗𝛼̂,𝜂𝜙𝑝,𝜂,𝑡−1

𝐾

𝜈 +  𝑡𝜗𝛼̂,𝜂
+

𝜗𝛼̂,𝜂

𝜈 +  𝑡𝜗𝛼̂,𝜂
𝛼̂𝑝,𝜂,𝑡  

Upon simplification, we get: 

𝜙𝑝,𝜂,𝑡
𝐾 = 𝜙𝑝,𝜂,𝑡−1

𝐾 +
𝜗𝛼̂,𝜂

𝜈 +  𝑡𝜗𝛼̂,𝜂
𝛼̂𝑝,𝜂,𝑡 . (𝐴. 3.4) 

 

We can get the recursive relation for cost function from Eq. (A.3.4) by using the competitive 

equilibrium condition for 𝑡 and 𝑡 − 1. Therefore, 

𝑐(𝑞𝑝,𝑡) = 𝑐(𝑞𝑝,𝑡−1) +
𝜗𝛼̂,𝜂

𝜈 +  𝑡𝜗𝛼̂,𝜂
𝛼̂𝑝,𝜂,𝑡 . 

Q.E.D. 
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Appendix 4:  

This appendix derives the components of measurement error in 𝛼̂𝑝,𝜂,𝑡 presented in Eq. (25). 

Suppose all returns are in excess of risk-free rate. Net returns of a fund are given as follows: 

𝑟𝑝,𝑡 = 𝜙𝑝 − 𝑐(𝑞𝑡−1) +∑𝛽𝑝,𝑘 × 𝐸(𝐹𝑘,𝑡)

𝐾

𝑘=1

+∑𝛽𝑝,𝑘 × 𝑓𝑘,𝑡

𝐽

𝑘=1

+ 𝜉𝑝,𝑡, (𝐴. 4.1) 

 

where 𝑓𝑘,𝑡 = 𝐹𝑘,𝑡 − 𝐸(𝐹𝑘,𝑡) and under the Berk, Green (2004) equilibrium condition 

𝐸𝑡−1 (𝜙𝑝 − 𝑐(𝑞𝑡−1)) = 0. 

𝜂 −factor model estimate of 𝛼̂ is computed as: 

𝛼̂𝑝,𝜂,𝑡 = 𝑟𝑝,𝑡 −∑𝛽̂𝑝,𝑘 × 𝐹𝑘,𝑡

𝜂

𝑘=1

, (𝐴. 4.2) 

where 𝛽̂s are estimated from a time series regression with returns data from 𝑡 − 𝑇 to 𝑡 − 1. 

We consider the cases where the 𝐽 −factor model nests the 𝐾 − and 𝜂 −factor models. 

We can decompose 𝛼̂𝜂 in Eq. (A.4.2) as: 

𝛼̂𝜂 = 𝛼
𝐾 + (𝛼𝜂 − 𝛼

𝐾) + (𝛼̂𝜂 − 𝛼𝜂), (𝐴. 4.3) 

 

where 𝛼𝐾 is the true net alpha which equals 𝜙𝑝 − 𝑐(𝑞𝑡−1), 𝛼
𝜂 is the alpha from an 𝜂-factor model 

without any estimation errors and sampling errors, 𝜃 is the model misspecification error and 𝜖 is 

the statistical estimation error. 

First, we rearrange terms in (A.4.2) to separate out the 𝛽 measurement error part as: 

𝛼̂𝑝,𝜂,𝑡 = 𝑟𝑝,𝑡 −∑𝛽𝑝,𝑘 × 𝐹𝑘,𝑡

𝜂

𝑘=1

−∑(𝛽̂𝑝,𝑘 − 𝛽𝑝,𝑘) × 𝐹𝑘,𝑡

𝜂

𝑘=1

, (𝐴. 4.4) 

 

Substituting the expression for 𝑟𝑝,𝑡 from (A.4.1) in Eq. (A.4.4) above, we get: 
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𝛼̂𝑝,𝜂,𝑡 = (𝜙𝑝 − 𝑐(𝑞𝑡−1)) +∑𝛽𝑝,𝑘 × 𝐸(𝐹𝑘,𝑡)

𝐾

𝑘=1

+∑𝛽𝑝,𝑘 × 𝑓𝑘,𝑡

𝐽

𝑘=1

−∑𝛽𝑝,𝑘 × 𝐹𝑘,𝑡

𝜂

𝑘=1

−∑(𝛽̂𝑝,𝑘 − 𝛽𝑝,𝑘) × 𝐹𝑘,𝑡

𝜂

𝑘=1

+ 𝜉𝑝,𝑡. 

(𝐴. 4.5) 

 

To identify the misspecification error and statistical estimation error components of 𝛼̂𝑝,𝜂,𝑡, first 

consider the case where 𝜂 > 𝐾. Without loss of generality, let the first 𝐾 factors of the 𝜂 −factor 

model be the same as the 𝐾 −factor model and let the first 𝜂 factors of the 𝐽 −factor model be 

same as the 𝜂 −factor model. With this, we can simplify (A.4.5) as: 

𝛼̂𝑝,𝜂,𝑡 = (𝜙𝑝 − 𝑐(𝑞𝑡−1)) − ∑ 𝛽𝑝,𝑘 × 𝐸(𝐹𝑘,𝑡)

𝜂

𝑘=𝐾+1

+ ∑ 𝛽𝑝,𝑘 × 𝑓𝑘,𝑡

𝐽

𝑘=𝜂+1

−∑(𝛽̂𝑝,𝑘 − 𝛽𝑝,𝑘) × 𝐹𝑘,𝑡

𝜂

𝑘=1

+ 𝜉𝑝,𝑡. 

(𝐴. 4.6) 

 

The term −∑ 𝛽𝑝,𝑘 × 𝐸(𝐹𝑘,𝑡)
𝜂
𝑘=𝐾+1  is the model misspecification part 𝜃 which arises due to using 

more factors than there are in the true asset pricing model (i.e. due to 𝜂 > 𝐾). The last three terms 

constitute the estimation error part 𝜖 which arise due to (i) omitted common factors, (ii) estimation 

errors in the betas of included factors and (iii) fund’s idiosyncratic returns.  

Now consider the case where 𝜂 < 𝐾. Without loss of generality, let the first 𝜂 factors of the 𝐾-

factor asset pricing model be the same as the 𝜂-factor model and let the first 𝜂 factors of the 𝐽-

factor model be same as the 𝜂-factor model. With this, we can simplify (A.4.5) as: 

𝛼̂𝑝,𝜂,𝑡 = (𝜙𝑝 − 𝑐(𝑞𝑡−1)) + ∑ 𝛽𝑝,𝑘 × 𝐸(𝐹𝑘,𝑡)

𝐾

𝑘=𝜂+1

+ ∑ 𝛽𝑝,𝑘 × 𝑓𝑘,𝑡

𝐽

𝑘=𝜂+1

−∑(𝛽̂𝑝,𝑘 − 𝛽𝑝,𝑘) × 𝐹𝑘,𝑡

𝜂

𝑘=1

+ 𝜉𝑝,𝑡. 

(𝐴. 4.7) 

 

The first term in (A.4.7), ∑ 𝛽𝑝,𝑘 × 𝐸(𝐹𝑘,𝑡)
𝐾
𝑘=𝜂+1 , is the model misspecification part 𝜃 which arises 

due to omitting some priced factors in the estimation model. The last three terms constitute the 

estimation error part 𝜖 which arise due to (i) omitted common factors, (ii) estimation errors in the 

betas of included factors and (iii) fund’s idiosyncratic returns. 

Putting the two cases together, we have: 
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𝜃 =

{
 
 

 
 
− ∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝜂

𝑘=𝐾+1

  for  𝜂 ≥ 𝐾,

∑ 𝛽𝑘,𝑝𝐸(𝐹𝑘)

𝐾

𝑘=𝜂+1

 for  𝜂 < 𝐾

, 

𝜖 = ∑ 𝛽𝑘,𝑝 𝑓𝑘,𝑡 

𝐽

𝑘=𝜂+1

+∑(𝛽̂
𝑘,𝑝,𝑡

− 𝛽
𝑘,𝑝
)

𝜂

𝑘=1

𝐹𝑘,𝑡 + 𝜉𝑝,𝑡 

(𝐴. 4.8) 

which validates the result presented in Eq. (25). Q.E.D. 
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Appendix 5: 

This appendix proves the proposition that 𝐶𝑜𝑣(𝛼̂𝑝,𝜂∗,𝑡, Γ𝑝,𝑡) > 0 when 𝑞𝑡 ≤ 𝑄
𝑚𝑎𝑥

. 

 

From Eq. (17), when 𝑞𝑡 ≤ 𝑄
𝑚𝑎𝑥 we have 

𝑑Γ𝑝,𝑡

𝑑𝛼̂𝑝,𝜂∗,𝑡
> 0. Therefore Γ𝑝 is an increasing function of 

𝛼̂𝑝,𝜂∗,𝑡 when 𝑞𝑡 ≤ 𝑄
𝑚𝑎𝑥. The above proposition will be true if we show that 𝐶𝑜𝑣(𝑋, 𝑓(𝑋)) > 0 

when 𝑓(𝑋) is an increasing function of 𝑋. 

First, note that covariance between two random variables 𝑋, 𝑌 can be written as:  

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝐸(𝑋))(𝑌 − 𝑘)], (𝐴. 5.1) 

 

for any constant 𝑘. 

Denoting 𝐸(𝑋) = 𝜇 and setting 𝑘 = 𝑓(𝜇) in (A.5.1), we get: 

𝐶𝑜𝑣(𝑋, 𝑓(𝑋)) = 𝐸[(𝑋 − 𝜇)(𝑓(𝑋) − 𝑓(𝜇))]. (𝐴. 5.2) 

 

Since 𝑓(. ) is an increasing function, by definition 𝑥1 > 𝑥2 ⇒ 𝑓(𝑥1) > 𝑓(𝑥2).  

Therefore, for each draw 𝑥𝑖 of 𝑋,  

𝑥𝑖 > 𝜇 ⇒ 𝑓(𝑥𝑖) > 𝑓(𝜇), 

𝑥𝑖 < 𝜇 ⇒ 𝑓(𝑥𝑖) < 𝑓(𝜇) 

Therefore, 

(𝑥𝑖 − 𝜇)(𝑓(𝑥𝑖) − 𝑓(𝜇)) ≥ 0 ∀ 𝑥𝑖 . (𝐴. 5.3) 

 

Combining the results in (A.5.2) and (A.5.3), we can conclude that 𝐶𝑜𝑣(𝑋, 𝑓(𝑋)) > 0 when 

𝑓(. ) is an increasing function. 

 

This result implies 𝐶𝑜𝑣(𝛼̂𝑝,𝜂∗,𝑡, Γ𝑝,𝑡) > 0 when 𝑞𝑡 ≤ 𝑄
𝑚𝑎𝑥

. Q.E.D. 

 


