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Abstract

I derive an equilibrium asset pricing model incorporating both systematic and idiosyncratic

return asymmetries, and show their respective impact on expected returns. With systematic

return asymmetry, investors allocate their wealth between the risk-free security, the market

portfolio, and a factor which overweights assets with high systematic asymmetry. Investors who

prefer positive asymmetry remain underdiversified from a mean-variance perspective to preserve

skewness in their portfolio, and idiosyncratic asymmetry therefore is priced in equilibrium. I

find that a systematic asymmetry factor and a factor capturing idiosyncratic asymmetry help

explain the cross-sectional variation of expected returns across U.S. equities, international eq-

uity markets, government bonds, currencies, and commodities. My results offer a risk-based

explanation of expected returns that contributes to our understanding of asset pricing across

multiple markets.
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1 Introduction

Most investors prefer portfolios with higher positive asymmetry, all else equal, because they oc-

casionally pay large and positive returns. Similarly, they prefer to avoid portfolios with negative

asymmetry because they sometimes fall drastically in value. Not all kinds of return asymmetry

are equal however; assets with positive systematic asymmetry are desirable because they offer the

potential for high returns during bad times, while idiosyncratic asymmetry is unrelated to periods

of high aggregate marginal utility. When the market portfolio is negatively skewed, which indicates

that it offers large negative returns more often than large positive returns, investors may prefer

to hold assets with high idiosyncratic asymmetry because they cannot obtain positive skewness in

their portfolio by buying the market index. This stands in contrast with the irrelevance of idiosyn-

cratic variance in the Capital Asset Pricing Model (CAPM) with unconstrained borrowing. In that

model, investors can reach a desired level of portfolio variance simply by adjusting their allocation

to the mean-variance efficient market portfolio.

Hence, both systematic and idiosyncratic asymmetries affect equilibrium asset prices and I

provide a model which shows how each source of risk is priced. I find that both kinds of return

asymmetry help capture the variations in expected returns in equities, government bonds, curren-

cies, and commodities.

When investors have preferences over the asymmetry of their portfolio returns, Harvey and

Siddique (2000), Kraus and Litzenberger (1976) and Rubinstein (1973) extend the CAPM and show

that expected returns include a compensation for negative systematic coskewness, which measures

the contribution of an asset to the skewness of the market portfolio. The assumption on investor

preferences in their asset pricing model implies that investors hold well-diversified portfolios.

However, Mitton and Vorkink (2007) show that skewness-loving investors will choose port-

folios concentrated in a few stocks to keep diversification from eliminating positive asymmetry.

Consequently, they remain exposed to idiosyncratic skewness, and this source of risk is priced in

equilibrium. Unfortunately, they do not obtain closed-form results, and therefore it is difficult to

disentangle the role of systematic and idiosyncratic asymmetries. I derive in this paper a new

asset pricing model in which investors may hold underdiversified portfolios, and characterize the

respective equilibrium prices of risk for systematic and idiosyncratic return asymmetries in closed
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form.

I make three main contributions. The first contribution is a novel equilibrium asset pricing

model that holds when returns display systematic asymmetry. In equilibrium, the expected return

for an asset varies with its covariance with the market portfolio and the parameter that governs

the skewness of its return distribution. The premium for systematic asymmetry risk depends on

whether the market portfolio is negatively or positively skewed. In a negatively skewed market,

assets with positive asymmetry are valuable because they diversify systematic asymmetry shocks

and they increase the skewness of a portfolio. These assets therefore earn lower average returns.

In a positively skewed market, assets with negative systematic asymmetry are desirable because of

their diversification benefit, and therefore have lower expected returns.

I specify a pure endowment economy in which expected utility maximizers invest in one period

and consume their wealth in the second period. Investors differ by their preferences, but they all

prefer higher expected return (non-satiability) and lower variance (risk aversion), and some prefer

positive skewness in their portfolio (decreasing absolute risk aversion). Asset returns follow an

asymmetric and fat-tailed distribution which nests the symmetric Student t distribution and the

normal distribution as special cases.

A three-fund separation theorem is obtained in equilibrium: Investors allocate their wealth

across the risk-free security, the value-weighted market portfolio, and a systematic asymmetry port-

folio that overweights high asymmetry assets and underweights low asymmetry assets. Investors

with above-average preference for asymmetry tilt their portfolio towards this last risk factor, but

their positions are exactly offset by positions held by other investors such that the market clears.

To obtain an equilibrium risk premium for skewness, Rubinstein (1973) and Kraus and Litzen-

berger (1976) invoke a two-fund separation theorem which implies that investors’ proportional

allocation to risky assets are the same as in the market portfolio. Harvey and Siddique (2000)

similarly adopt a representative agent framework. My model complements theirs in a distinct way;

while their assumptions on utility imply investors hold well-diversified portfolios, I instead impose

structure on asset returns and obtain that investors may hold concentrated portfolios depending

on their preference for asymmetry.

My second main contribution is to show under which conditions idiosyncratic asymmetry is

priced in equilibrium with expected utility maximizers. Idiosyncratic return asymmetry commands
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a separate risk premium from systematic asymmetry when some or all of the asymmetry in returns

is idiosyncratic and some investors have preference for skewness. Assets with positive idiosyncratic

asymmetry are valuable because they increase the asymmetry of a portfolio, and I show that its price

of risk is negative. Some investors are willing to accept lower expected returns for the possibility of

very large returns. This is consistent with the negative relation between idiosyncratic skewness and

stock returns found by Boyer, Mitton, and Vorkink (2010), and also with investors’ preference for

lottery stocks modeled in Barberis and Huang (2008), Brunnermeier, Gollier, and Parker (2007),

and further documented in Bali, Cakici, and Whitelaw (2011). However, with positive idiosyncratic

skewness comes idiosyncratic variance. Since it is not possible to obtain one without the other and

investors are risk averse, expected returns also contain a positive risk premium for idiosyncratic

variance.

My final contribution is to show empirically the importance of systematic and idiosyncratic

asymmetry across different asset classes. I consider U.S. equity portfolios sorted by industry or by

size and momentum, developed equity markets sorted by country or by momentum, U.S. Treasury

portfolios sorted by maturity or momentum, currency forward portfolios sorted by forward discount

or momentum, and commodity futures portfolios sorted by basis or momentum. Average returns

for these assets are related to both measures of return asymmetry, especially for portfolios sorted

on momentum. To distinguish between their respective role, I run time series regressions using

the market portfolio, the systematic asymmetry factor, and a factor that captures idiosyncratic

asymmetry. Then, I test for the null hypotheses of zero pricing errors.

Several important findings arise from this empirical investigation. First, consistent with the

theory, risk premiums on the systematic asymmetry factors are significant in all asset classes, and

positively related to the asymmetry of their respective market portfolio. Further, the systematic

asymmetry factors for equities, currencies and commodities, for which the market portfolio is

negatively skewed, have offered high returns during prolonged recessions. Investors have been

willing to earn lower average returns on this factor in exchange for high and positive returns during

bad times. Next, a model that combines the market portfolio and the systematic asymmetry

factor leads to important reductions in test statistics of the null hypothesis of zero pricing errors

compared to the CAPM. The full asset pricing model that includes factors for both systematic

and idiosyncratic asymmetries is outperformed only by models which include a factor based on the
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same variable used to sort test portfolios on the left-hand side. Nevertheless, it is only rejected,

as are all other models considered, for size and momentum sorted U.S. equity portfolios, and for

Treasury portfolios. Overall, these results provide support for the importance of both sources of

return asymmetry in asset pricing.

My paper is related to a growing literature exploring pricing factors across multiple markets.

Fama and French (1993) and Koijen, Lustig, and Nieuwerburgh (2012a) investigate risk factors

common to the U.S. equity and bond markets. Baker and Wurgler (2012) find similar comove-

ments in government bonds, and large and safe stocks. Several recent studies find striking results

using risk factors applied to U.S. and international equities, country equity indices, government

bonds, currencies, and commodities. Asness, Moskowitz, and Pedersen (2013) construct value and

momentum factors for each, Moskowitz, Ooi, and Pedersen (2012) construct a time series momen-

tum factor, Koijen, Moskowitz, Pedersen, and Vrugt (2012b) use a measure of carry yield, Lettau,

Maggiori, and Weber (2013) use the downside beta of Ang, Chen, and Xing (2006), while Frazzini

and Pedersen (2013) construct a low-minus-high beta factor. This paper provides a risk-based ex-

planation of expected returns using both systematic and idiosyncratic asymmetries, and contributes

to our understanding of asset prices in different markets.

This paper is also related to a vast literature on asymmetric dependence measures beyond

coskewness, and their relation with risk premia. Longin and Solnik (2001) and Ang and Bekaert (2002)

show that international equity markets exhibit significantly higher correlation in bear markets than

in bull markets, while Ang and Chen (2002) and Hong, Tu, and Zhou (2007) find similar asym-

metric correlations in U.S. equity portfolios. Ang et al. (2006) and Lettau et al. (2013) estimate a

significant risk premium for bearing downside risk, which they measure by the covariance between

an asset and the market conditional on the market return being below a threshold. My model

introduces a new systematic asymmetry factor derived from micro-foundations, and shows that it

helps capture cross-sectional variations of expected returns.

The next section presents an asset pricing model that incorporates both systematic and idiosyn-

cratic return asymmetry. Section 3 contains empirical tests of the model, and Section 4 concludes.
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2 Asset Pricing with Return Asymmetries

I discuss in the next section two routes that have been used to solve for equilibrium risk premia

in a two-period model with expected utility preferences. Under these traditional approaches, it

is difficult to handle both systematic and idiosyncratic asymmetries. In Sections 2.4 and 2.6, I

provide a model that captures their respective roles.

2.1 Assumptions and notations

There are I investors in the economy each allocating their initial wealth Wi,0 for one period and

consuming it at the end of the next period. Investors allocate their wealth across N risky assets

and one risk-free asset which pays an exogenously determined rate of rf . Investor i chooses his

optimal portfolio allocation ωi to maximize his expected utility Ui of next period wealth Wi,1 =

Wi,0

(
1 + rf + ω⊤

i (r − rf )
)
where ωi,j is the proportion of his wealth invested in asset j, ω⊤

i is the

transpose of the N × 1 vector ωi, and r is the N × 1 vector of risky asset returns.

Without loss of generality, denote the return on asset j in excess of the risk-free rate rf by

rj − rf = E [rj − rf ] + ϵj (1)

where ϵj is a random shock with mean zero. The N×1 vector of innovations ϵ has a finite covariance

matrix Σ, and all investors have homogeneous information. In this and following sections, we will

make different assumptions on the distribution of ϵ and discuss their impact on the N × 1 vector

of equilibrium risk premia E [r − rf ].

The first order conditions of investor i’s portfolio allocation decision are given by

E
[
U ′
i (Wi,1)

]
E [rj − rf ] = −Cov

(
rj − rf , U

′
i (Wi,1)

)
, for all j = 1, ..., N, (2)

where I have used the definition of covariance and U ′
i is the first derivative of the utility function

Ui. The main difficulty in obtaining an expression for equilibrium risk premia lies in solving for

the covariance on the right hand side of (2). For example, the CAPM is obtained by making an

assumption either on the form of the utility function U , on the distribution of asset returns, or

both (see Cochrane, 2001, Ch. 9). In what follows, I contrast the ability of the first two methods
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to handle return asymmetries, and then introduce my model.1

2.2 Assumptions on utility functions

The first approach uses a series expansion to express utility as a function of moments of returns.

Consider for example a Taylor expansion of utility Ui(Wi,1) around expected wealth E [Wi,1]

Ui(Wi,1) = Ui(E[Wi,1]) + U ′
i(E[Wi,1])Wi,0

(
rWi,1 −E[rWi,1 ]

)
+
U ′′
i (E[Wi,1])W

2
i,0

2

(
rWi,1 − E[rWi,1 ]

)2
+ . . . (3)

where rWi = ω⊤
i (r − rf ) is the excess return on investor i’s wealth, and U ′′

i denotes the second

derivative of Ui.

Using a series representation for Ui has two advantages. First, the covariance in investor i’s first

order condition for asset j becomes a manageable linear combination of different return covariances.

To see this, derive the expansion (3) and substitute into the first order condition (2) as

E [rj − rf ] =
−U ′′

i (E[Wi,1])Wi,0

E [U ′
i (Wi,1)]

Cov
(
rj , rWi,1 − E[rWi,1 ]

)
−
U ′′′
i (E[Wi,1])W

2
i,0

2E [U ′
i (Wi,1)]

Cov
(
rj ,
(
rWi,1 −E[rWi,1 ]

)2)
(4)

which shows that the expected return on asset j required by investor i depends on its covariance

with his portfolio’s return and squared return2.

Second, preference theory provides guidance for the sign and intuition of each term multiplying

these different covariances. The first term on the right hand side of (4) indicates that a risk averse

investor (U ′′
i < 0) requires a higher risk premium for an asset that co-moves more with his wealth.

This is equivalent to a preference for lower portfolio variance as represented by the last term in

Equation (3). Also, preference for positive asymmetry U ′′′
i > 0 results in a negative risk premium for

assets with positive coskewness3
(
Cov

(
rj ,
(
rWi,1 − E[rWi,1 ]

)2))
. The condition U ′′′

i > 0 is implied

1The third method imposes more restrictive assumptions than the first two, and I do not discuss it
2I cut the Taylor expansion for U ′

i in Equation (4) at the second term to focus on return asymmetries. While the
standard CAPM stems from a one-term expansion, Kraus and Litzenberger (1976) and Harvey and Siddique (2000)
use a two-term expansion to obtain the three-moment CAPM, and Dittmar (2002) analyzes the role of cokurtosis in
a model based on a three-term expansion. In a recent contribution, Chabi-Yo (2012) provides a dynamic extension
of these models.

3Coskewness can alternatively be defined as Cov
(
rj , r

2
m

)
. The difference depends on whether the Taylor expansion
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by the desirable property for utility functions of decreasing absolute risk aversion (see Arditti,

1967). Coskewness is related to asset j’s contribution to the skewness of investor i’s wealth, and is

therefore desirable.

To investigate the impact of systematic and idiosyncratic asymmetry in equilibrium, we need

to move from investor i’s portfolio optimality condition in Equation (4) to a market equilibrium,

which requires summing first order conditions across all investors. Unfortunately, the addition of

coskewness terms does not produce a risk measure that is independent of each investor’s allocation.

This problem can be solved by imposing further assumptions on utility: Rubinstein (1973) and

Kraus and Litzenberger (1976) assume utility functions that display linear risk tolerance with equal

cautiousness across investors (see Cass and Stiglitz, 1970), and Harvey and Siddique (2000) adopt

a representative agent framework. In each case, a two-fund separation theorem holds, all investors’

proportional allocations to risky assets are those of the value-weighted market portfolio, and the

resulting priced risk measures are the covariance and coskewness with the market portfolio.

However, these assumptions on utility precludes idiosyncratic asymmetry from playing a role. In

an economy with heterogeneity in skewness preference, Mitton and Vorkink (2007) show that some

investors will remain underdiversified in equilibrium to preserve skewness in their portfolios. As a

result they care about the level of idiosyncratic skewness, and this risk is priced. Unfortunately,

their model is not available in closed-form which complicates the analysis of the respective role

of systematic and idiosyncratic skewness. I provide in Sections 2.4 and 2.6 a model that avoids

the above assumption on utility functions and therefore let both systematic and idiosyncratic

asymmetry impact equilibrium expected returns.

2.3 Assumptions on the return distribution

Alternatively, the second method for solving Equation (2) consists in assuming a specific distribution

for the return shocks ϵ whose analytical tractability allows to disentangle the covariance on the right

hand side. For example, under normally distributed innovations, ϵ = z where z ∼ N (0,Σ), we can

use Stein’s Lemma to express investor i’s first order condition as

E
[
U ′
i (Wi,1)

]
E [rj − rf ] = −Wi,0E

[
U ′′
i (Wi,1)

]
Cov(rj , rWi).

in Equation (3) is taken around current wealth Wi,0 or around the expectation of next period’s wealth E [Wi,1].
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Dividing both sides by −E [U ′′
i (Wi,1)] and summing over all I investors leads to the following

equilibrium relation

E [rj − rf ] = Wm,0

(
I∑

i=1

θ−1
i

)−1

Cov(rj , rm) (5)

where Wm,0 =
∑I

i=1Wi,0 and rm =
∑I

i=1Wi,0rWi are the aggregate wealth and its excess return,

and θi = −E[U ′′
i (Wi,1)]

E[U ′
i(Wi,1)]

is investor i’s global absolute risk aversion (see Huang and Litzenberger,

1988, Ch. 4). The equilibrium risk premium for asset j is a linear function of its covariance with

the market portfolio, and under standard non-satiation and risk aversion assumptions (U ′ > 0 and

U ′′ < 0), the price of covariance risk is positive4.

The pricing equation (5) is also valid for the market portfolio, and substituting its risk premium

into (5) leads to the well-known CAPM

E [rj − rf ] = βjE [rm − rf ] (6)

where asset j’s risk premium depends on its loading βj =
Cov(rj ,rm)

σ2
m

on the market portfolio, and

σ2
m is the market portfolio variance.

This practice of assuming a return distribution to solve Equation (2) is rarely pursued. To be

useful, a distribution needs to be a realistic model for asset returns and offer a manageable form

of the covariance in Equation (2). While the normal distribution may fall short on the first count,

other members of its family—the class of elliptical distributions—offer more flexibility and retain

its analytical tractability5. Unfortunately, they do not lead to richer empirical predictions (see

Owen and Rabinovitch, 1983).

To see this limitation, consider for example another elliptical distribution, the symmetric Stu-

dent t distribution (ST ), whose stochastic representation ϵ =
√
gmz consists of the product of a

normally distributed vector z and the square root of an independent inverse gamma random vari-

able gm, and where the covariance of z is now E[gm]−1Σ to ensure that the innovation covariance

matrix E
[
ϵϵ⊤
]
= Σ is preserved6. I use a subscript m to emphasize that gm is a scalar random

shock that impacts all assets in the market. Using a generalization of Stein’s Lemma given in

4Equation (5) does require additional technical assumptions on utility functions. Specifically, Ui is assumed to be
twice differentiable and integrable (E [U ′

i (Wi,1)] < ∞ and E [U ′′
i (Wi,1)] < ∞) for all i = 1, ...I.

5See Landsman and Neslehova (2008) for a generalization of Stein’s Lemma for elliptical distributions.
6gm is distributed as IG

(
ν
2
, ν
2

)
where ν is a degree-of-freedom parameter, see Appendix A.1 for more details.
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Appendix B for ST -distributed returns, we obtain by following the same procedure as above

E [rj − rf ] = Wm,0

(
I∑

i=1

θST−1
i

)−1

Cov(rj , rm) (7)

where θSTi = −EST∗
[U ′′

i (Wi,1)]
E[U ′

i(Wi,1)]
is investor i’s adjusted global absolute risk aversion and ST ∗ denotes

a probability measure under which the innovations ϵ have fatter tails than under ST . The pricing

equation (7) differs from (5) under normally distributed returns only by this adjustment for tail

risk in the global absolute risk aversion measures. However, writing Equation (7) for the market

portfolio and substituting back into (7) leads to the same factor representation as in the standard

CAPM in (6). Owen and Rabinovitch (1983) show that this is the same regardless of the elliptical

distribution used. Hence, using more flexible distributions in the elliptical family offers little more

in terms of empirical predictions.

The absence of any risk premium for asymmetry in Equations (5) and (7) does not imply in-

vestors are indifferent to asymmetries. Rather, it is due to the symmetry of the return distributions

I have assumed. Unfortunately, finding an asymmetric and analytically tractable distribution has

proven to be a hard task so far. The next section generalizes the normal and Student t distributions

to handle both systematic and idiosyncratic return asymmetries.

2.4 A model with systematic asymmetry

I begin by deriving an equilibrium relation using an asymmetric Student t distribution that cap-

tures systematic asymmetry. Then, I introduce an extension of the asymmetric t distribution that

also handles idiosyncratic asymmetry. In both cases, I present the return distribution using their

stochastic representation, and not their probability distribution function. Stochastic representa-

tions give the recipe for a random variable, and are useful to grasp how systematic and idiosyncratic

asymmetries are generated.

I let innovations in returns follow the asymmetric Student t distribution (AT ) from Demarta and

McNeil (2005) which I have parametrized such that their first and second moments are preserved

(E [ϵ] = 0 and E
[
ϵϵ⊤
]
= Σ). The stochastic representation of the AT distribution is

ϵ = λ(gm − E [gm]) +
√
gmz, z ∼ N

(
0, E [gm]−1

(
Σ− σ2

gmλλ
⊤
))

(8)
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where λ is a N × 1 vector of asymmetry parameters and σ2
gm is the variance of gm (see Appendix

A.1). Even though the AT is not an elliptical distribution, the symmetric t distribution is nested

when λj = 0 for all j = 1, ..., N , and the normal distribution is retrieved when λj = 0 for all

j = 1, ..., N and the degree-of-freedom of gm goes to infinity.

The positively skewed shock gm impacts asset returns in two different ways. First, it scales

their overall variance via
√
gmz. This effect creates non-normal tail risk symmetrically for negative

and positive returns. Second, asset j loads on this common shock’s deviation from its mean,

λj (gm − E[gm]). This interaction creates systematic asymmetry in asset returns, the sign of which

depends on whether λj is positive or negative. When gm is above its mean, all returns with

negative loadings, λj < 0, receive a negative shock. Since inverse gamma random variables are

always positively skewed, it creates negative systematic asymmetry for these assets.

Appendix 1 provides an extension of Stein’s Lemma for AT -distributed returns. Summing

investors’ portfolio optimality conditions leads to the main result below which I call the Asymmetric

CAPM (A-CAPM).

Proposition 1 (A-CAPM). In equilibrium with AT -distributed returns, security j requires two risk

premia

E [rj − rf ] = γCov (rj , rm) +
(
E [rm − rf ]− γσ2

m

) λj

λm
(9)

where λm = ω⊤
mλ is the aggregate wealth’s asymmetry risk loading, and

γ = Wm,0

(
I∑

i=1

θAT−1
i

)−1

is an aggregate measure of risk aversion where

θAT
i = −EAT ∗

[U ′′
i (Wi,1)]

E [U ′
i(Wi,1)]

is an adjusted measure of global absolute risk aversion for investor i, and AT ∗ denotes a probability

measure whose only difference with the true probability measure is that the systematic asymmetry

shock gm is distributed as IG
(
ν−2
2 , ν2

)
instead of IG

(
ν
2 ,

ν
2

)
.
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Proof. See Appendix B.

The second term on the right hand side of Equation (9) indicates that the premium for system-

atic asymmetry depends on the sign of the market portfolio’s asymmetry. Consider first the case

when the market is negatively skewed (λm < 0). To obtain positive asymmetry by investing in the

market portfolio, one would have to take a short position and therefore lose the market risk pre-

mium. Assets with positive systematic asymmetry λj > 0 are valuable not only because they have

high returns during bad times when the market experiences negative asymmetry shocks, but also

because they offer positive asymmetry in an environment where the market is negatively skewed.

This is a key aspect of how asymmetry differs from variance in a CAPM setting with unconstrained

borrowing in which a target variance can be reached by investing only in the market portfolio.

Consider next the case when the market portfolio is positively skewed (λm > 0). An investor

can lever up or down the market portfolio to obtain the desired level of positive asymmetry in his

portfolio. Assets with lower λs are now valuable from a diversification perspective; they attenuate

the impact of below average systematic shock (gm − E[gm] < 0). In this context, the economic

intuition for λ is the same as for β in the CAPM.

In both cases, assets with lower ratios λ
λm

are desirable and this source of risk commands a

positive risk premium E [rm − rf ] − γσ2
m. The price premium for positive λ assets in a negative

λm market decreases when the market Sharpe ratio increases; investors with preference for positive

asymmetry are less willing to pay a higher price for positively skewed assets as the market becomes

more appealing from a mean-variance perspective.

The implications of Proposition 1 from the perspective of a positive theory of asset pricing

are the same as in the model of Kraus and Litzenberger (1976). What have we gained then by

assuming the AT distribution? I have derived an equilibrium relation without initially invoking a

separation theorem, and my model therefore complements those of Rubinstein (1973) and Kraus

and Litzenberger (1976). Further, the next section shows that a three-fund separation theorem

is obtained, which is a clear distinction from the two-fund separation theorem relied upon in

their models. Also, the AT distribution provides a stepping stone for a model with idiosyncratic

asymmetry which I introduce in Section 2.6.
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2.5 Portfolio implications under systematic asymmetry risk

We now examine the portfolio implications by substituting the equilibrium risk premia in Equation

(9) into agent i’s first order condition in Equation (2).

Corollary 1 (Three Fund Separation). In an equilibrium under AT -distributed returns, each in-

vestor allocates his wealth to the risk-free security, the value-weighted market portfolio ωm, and a

systematic asymmetry portfolio with weights equal to

ωSA =

(
1

1− σ2
gmλ

⊤Σ−1λ

)
Σ−1λ. (10)

Agent i allocates a fraction fm,i =
γ

Wi,0θi,t
of his wealth to the market portfolio and a fraction fSA,i

to the systematic asymmetry portfolio, where fSA,i is given in Appendix C.

The asymmetry portfolio rSA = ω⊤
SA(r−rf ) overweights assets with high systematic asymmetry

and underweights assets with low asymmetry. Investors with strong preference for asymmetry will

tilt their portfolio towards the systematic asymmetry factor, but their positions are exactly offset

by investors with weaker or no preference for asymmetry. The rest of their wealth is split between

the risk-free security and the value-weighted market portfolio. Summing each investor’s positions,

we verify that the market for risky asset clears (
∑I

i=1Wi,0fm,i = Wm,0 and
∑I

i=1Wi,0fSA,i = 0).

By construction, all return asymmetry in the A-CAPM is systematic. The next section gener-

alizes the A-CAPM by introducing idiosyncratic asymmetry.

2.6 A model with systematic and idiosyncratic asymmetries

The asymmetry of an asset under the AT distribution is created by a common shock gm and is

therefore entirely systematic by design. This is an important limitation. For example, the asymme-

try of a portfolio with weight ω in this framework is the weighted average of each asset’s loading,

ω⊤λ. Yet, individual assets can exhibit positive asymmetry while aggregating to a negatively

skewed market, an empirical observation documented by Albuquerque (2012) and others in equi-

ties. Consequently, I introduce in this section the generalized asymmetric Student t distribution

(GAT ). Compared to the stochastic representation for the AT distribution in Equation 11, there

13



is one additional term, φj(gj − E [gj ]), which captures idiosyncratic return asymmetry:

ϵj = φj(gj − E [gj ]) + λj(gm − E [gm]) +
√
gmzj , for all j = 1, ..., N (11)

where φj is a scalar idiosyncratic asymmetry parameter and gj is an inverse gamma variable

independent of gm and z, and with the same degree-of-freedom as gm. Therefore, gj is genuinely

an idiosyncratic shock, and gj and gm share the same moments (e.g. E [gj ] = E [gm]). As a result,

asset j’s idiosyncratic asymmetry is uniquely determined by its loading φj on gj .

The asset-specific shock φj(gj − E[gj ]) adds flexibility by allowing for positive asymmetry in

asset j (i.e. φj + λj > 0), and negative asymmetry in the market portfolio (λm = ω⊤
mλ < 0) in

which idiosyncratic shocks have been averaged out. Finally, the covariance of z, given in Appendix

A.2, is specified such that the covariance of the innovations ϵ is still Σ.

The GAT is a weak assumption on the distribution of returns. Not only does the GAT dis-

tribution nest the AT distribution (when all φj = 0), the symmetric Student t distribution (when

all φj = 0 and λj = 0) and the normal distribution (when all φj = 0, λj = 0, and ν → ∞), it

captures prevalent characteristics of financial asset returns such as asymmetric correlation (Longin

and Solnik, 2001; Ang and Chen, 2002) and downside beta (Ang et al., 2006; Lettau et al., 2013).

Figure 3 in Appendix A.3 and the discussion therein illustrates how the AT distribution captures

stylized facts of financial asset returns.

With GAT -distributed returns, Proposition 1 is supplemented with two additional risk premia

as follows, and I denote this model as the Generalized Asymmetric CAPM (GA-CAPM).

Proposition 2 (GA-CAPM). In equilibrium with GAT -distributed returns, security j requires four

risk premia

E [rj − rf ] = γCov (rj , rm) + πSA λj

λm
+ πIV φ2

j + πIAφ3
j (12)

where πSA is the price of systematic asymmetry risk, πIV is the price of idiosyncratic variance

risk, and πIA is the price of idiosyncratic asymmetry risk, all of which are given by the following
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expressions:

πSA = E [rm − rf ]− γσ2
m + γσ2

g

N∑
k=1

ω2
m,kφ

2
k +ASA,

πIV = AIV
j σ2

g ,

πIA = −AIA
j κg, (13)

where σ2
g and κg are the asymmetry shocks’ variance and third central moment, and ASA, AIV

j and

AIA
j are constants, all of which depend on investor preferences and are given in Equations (34) in

Appendix B. The sign of AIV
j and AIA

j are discussed below.

Finally, the measures of aggregate global relative risk aversion contains adjustments for higher

order risk

γ = Wm,0

(
I∑

i=1

θGAT−1
i

)−1

with

θGAT
i = −EGAT ∗

[U ′′
i (Wi)]

E [U ′
i(Wi)]

where GAT ∗ denotes a probability measure whose only difference with the true probability measure

is that the systematic asymmetry shock gm is distributed as IG
(
ν−2
2 , ν2

)
instead of IG

(
ν
2 ,

ν
2

)
.

Proof. See Appendix B.

Idiosyncratic asymmetry risk impacts expected returns through two different channels which

are distinct from the way systematic asymmetry affects expected returns. To see clearly how

idiosyncratic asymmetry is compensated in equilibrium, set all systematic asymmetries in Equation

(12) to zero (λj = 0 for all j):

E [rj − rf ] = γCov (rj , rm) +AIV
j σ2

gφ
2
j −AIA

j κgφ
3
j . (14)

I show in Appendix B that the constant AIA
j is always positive under decreasing absolute risk

aversion (U ′′′ > 0). Given that the third central moment κg of an inverse gamma variable is always

positive, the risk premium for idiosyncratic asymmetry risk φj is negative. Therefore, the GA-

CAPM shows that under expected utility preferences, idiosyncratic asymmetry is priced if returns
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display idiosyncratic asymmetry and some investors have a preference for positive skewness.

The second risk premium in Equation (14), AIV
j σ2

gφ
2
j , reflects the tradeoff between idiosyncratic

skewness and variance: A skewness-loving investor is willing to pay a price premium for a positively

skewed asset, but buying this asset increases the overall variance of his portfolio. The constant AIV
j

contains two terms. The first is a positive constant reflecting the compensation for the increase in

idiosyncratic variance caused by investing in a positive φ asset. The second term is negative and

cancels the presence of idiosyncratic variance in the covariance risk premium. The overall impact is

a positive risk premium for idiosyncratic variance, and a risk premium for covariance only indicative

of comovements between an asset and the market.

In the presence of idiosyncratic asymmetry risk, investors still allocate to the risk-free security,

the market portfolio, and the systematic asymmetry factor although its weights now contain an

adjustment for idiosyncratic variance (see Appendix C). But these three portfolios do not constitute

their entire portfolio. The rest of their allocation is tilted towards high idiosyncratic asymmetry

assets. Unfortunately, this part of their allocation cannot be separated from each investor’s prefer-

ences (the exact allocations are given in Appendix C). In the next section, I will combine the market

and systematic asymmetry factors proposed in Corollary 1 to a factor that captures idiosyncratic

asymmetry, and examine empirically the respective role of each kind of return asymmetry across

different asset classes.

3 Empirical Results

In this section, I test for the importance of the systematic asymmetry factor and idiosyncratic

asymmetry in different asset classes. My empirical methodology follows three steps:

1. First, I construct time series of monthly returns for test portfolios in four different asset

classes: equities (U.S. equity portfolios sorted by industry or by size and momentum, and

developed market equity indices sorted by country or by momentum), U.S. Treasury bonds

sorted by maturity or momentum, currency forward portfolios sorted by forward discount or

momentum, and commodity futures portfolios sorted by basis or momentum (Section 3.1).

2. For each set of test portfolios, I build the systematic asymmetry risk factor from Corollary 1,

and a risk factor that captures idiosyncratic asymmetry (Section 3.2).
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3. Using the market portfolio and these two asymmetry factors, I run time series regressions

and test for the joint hypothesis that all pricing errors are equal to zero (Section 3.3).

3.1 Test portfolios

I provide here a brief description of the test portfolios in each asset class, and provide more details

on their source and construction methodology in Appendix D. All returns are monthly, end in

December 2012, are denominated in U.S. dollars, and are in excess of the one-month U.S. Treasury

bill rate. Tables 1 to 4 present summary statistics for each test portfolio in all asset classes, including

their respective starting date.

In what follows, I consider two broad categories of test portfolios. First, I use portfolios sorted

by a variable specific to each asset class. U.S. equity portfolios are sorted by industry (see Lewellen,

Nagel, and Shanken, 2010), developed equity markets by country, U.S. Treasury bonds by maturity,

currency forwards by forward discount (Lustig, Roussanov, and Verdelhan, 2011), and commodity

futures by basis (Yang, 2013; Gorton, Hayashi, and Rouwenhorst, 2012). Then, I consider portfolios

sorted by momentum in each asset class. In all cases below, momentum refers to the one year lagged

return skipping the last month (using returns from month t − 12 to t − 2). Asness et al. (2013)

provide compelling evidence on the profitability of momentum strategies in different asset classes,

and I show that there is a strong relation in all cases between momentum and return asymmetries.

For U.S. equity, I use 10 value-weighted portfolios sorted by industry and 25 sorted by size and

momentum. Returns start in July 1961 for a total number of T = 618 observations. Longer time

series are available, but I set the starting point to coincide with the starting date of U.S. Treasuries

to facilitate the comparison between stocks and government bonds. The market portfolio is the

CRSP value-weighted portfolio of all stocks.

Panels A in Tables 1 and 3 report for these portfolios their annualized average return and

volatility, β with the market portfolio, skewness, and coskewness with the market portfolio. In the

last row of each panel, I report the cross-sectional correlation between each measure and sample

average excess returns. These test portfolios are challenges for empirical tests of the CAPM, as

shown by the negative correlation between β and average returns for size and momentum portfolios,

and near zero correlation for industry portfolios.

I test for the null hypothesis of zero skewness and zero non-normal coskewness using boot-
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strapped samples under the null hypothesis of normal returns7. For both sets of portfolios, the

null hypothesis of zero coskewness is rejected everywhere at the 1% confidence level. Further, the

cross-sectional correlation between average returns and coskewness is negative in both panels, and

negative for skewness for size and momentum portfolios. These negative correlations are consistent

with investors requiring compensation for negative return asymmetries. The negative correlations

for coskewness in both sets of portfolios are in line with its importance in asset pricing as shown

by Harvey and Siddique (2000).

Next, panel B of Table 1 contains summary statistics for 16 value-weighted developed country

equity markets. Returns are from Datastream, and start in February 1973 (T = 479). Using each

index’s market capitalization in U.S. dollars, I build a value-weighted market portfolio containing

all 16 markets. Rouwenhorst (1998) and Asness et al. (2013) find strong evidence of profitability of

momentum strategies in international equity markets, and I also build five value-weighted quintile

portfolios of these 16 markets sorted each month by momentum. Summary statistics for these

portfolios are found in panel B of Table 3. The first column in panel B confirms that momentum

is profitable in international equity markets, with the winner quintile earning on average 6.91%−

0.71% = 6.20% annually more than the bottom quintile. The null hypotheses of zero coskewness

are rejected everywhere. Similar to U.S. equity portfolios, coskewness is strongly negatively related

to average returns, and so is skewness for momentum sorted portfolios.

U.S. Treasury fixed term bond indices are available from CRSP for maturities of 1, 2, 5, 7, 10,

20, and 30 years starting in July 1961 (T = 618). These test portfolios are strictly speaking not

portfolios as a single representative bond is chosen each month. Because of the limited number

of different assets, I build three equally weighted portfolios using each month the 30th and 70th

percentiles of momentum. I also construct a value-weighted market portfolio of all Treasury issues

available from CRSP, see Appendix D for further details.

Panel A in Table 2 reports on constant maturity indices. There is a strong and positive corre-

lation between βs and average returns, and the t statistics of the βs (not reported) indicate that

they are all significant. This suggests that Treasury βs, using a value-weighted Treasury market

portfolio, may play a more important role in pricing these assets than the equity market does for

equity portfolios. The skewness and coskewness are significantly positive everywhere except for

7The coskewness of a bivariate normal distribution is Cov(r, r2m) = 2E [rm − rf ]Cov(r, rm).
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skewness for 5-year bonds.

The correlation of average returns with skewness is negative, but positive for coskewness. This is

exactly in line with the economic implications of the GA-CAPM. Treasuries are the only asset class

for which the value-weighted portfolio of all securities is positively skewed. In such market, assets

with high systematic asymmetry are not desired for their asymmetry because positive portfolio

skewness can be obtained by buying the market index. Instead, lower systematic asymmetry is

valuable for diversification purposes. Hence, higher coskewness implies higher average returns as

found in the data.

The average excess returns of momentum sorted portfolios, reported in panel A of Table 4,

indicate that momentum is profitable in U.S. Treasuries with the top portfolio earning 1.14% more

than the bottom portfolio. I consider momentum-sorted portfolios in U.S. Treasuries to have a

comprehensive analysis of the relation between momentum profitability and return asymmetries

across all asset classes. However, given the small number of portfolios, I am careful not to reach

any firm conclusions on momentum in this asset class.

Next, panel B in Table 2 contains summary statistics for portfolios of one-month forwards

for 16 developed country exchange rates. Lustig et al. (2011), Lettau et al. (2013), and Koijen

et al. (2012b) all report important data problems using a wider sample of currencies (failures of

covered interest rate parity and missing data). I follow Lustig et al. (2011) and consider a smaller

dataset of developed countries, which has the advantage of being comparable to our sample of

international equity market indices. Spot and one-month forward rates are from Datastream, and

the sample starts in November 1983 (T = 350). Following Lettau et al. (2013), I use the value-

weighted U.S. equity market as the market portfolio.

Based on Lustig et al. (2011), I build five equally weighted portfolios of long one-month forward

positions sorted by their average forward discount during the previous month. The forward discount

ln
(
St
Ft

)
, where St is the spot rate and Ft is the one-month forward rate (both denominated in U.S.

dollar per unit of foreign currency), is indicative of the interest rate differential between the foreign

country and the U.S..

Portfolios are sorted from low to high interest rate differential with the top quintile portfo-

lio outperforming the bottom by a spread of 5.78% − 0.43% = 5.35% annually. Average returns

are positively related to market β, and negatively to coskewness. This is consistent with Lettau
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et al. (2013) who find that a model with β and downside β, defined as the slope coefficient con-

ditional on low market returns, explain the cross-sectional variations in expected returns. The

skewness for the low interest rate differential portfolio is 0.31, and decreases monotonically to a

value of −0.30 for the top portfolio. This negative relation between average returns and skewness

is in line with the findings of Brunnermeier, Nagel, and Pedersen (2008).

Currency forward portfolios sorted by momentum, as reported in panel B of Table 4, produce

a similar spread in average returns between the winner and the loser portfolios of 4.72%− 1.67% =

3.05%. Correlations between averages returns and volatility, β, and skewness are negative. Curren-

cies are the only case in which momentum sorted portfolios do not produce a negative correlation

between average returns and coskewness.

Finally, I construct five basis and five momentum sorted commodity futures portfolios. The

universe consists of the 24 commodities found in the Goldman Sachs Commodity Index. This

index selects commodity futures based on liquidity, and covers six categories (energy, industrial

metals, grains, soft agriculture products, livestock products and precious metals). The sample

starts in January 1970 (T = 338), and as for currency forward portfolios, I use the U.S. equity

value-weighted index as the market portfolio.

Each month I sort available commodity futures into five equally weighted portfolios. The sort

is based on their previous month basis, which is defined as ln

(
F

T0
t

F
T12
t

)
/(T12 − T0) where F T12

t is

the futures price with the maturity T12 closest to one year ahead and F T0
t is the futures price with

maturity T0 nearest, but later than the end of next month. Each portfolio return is the equally

weighted return on the futures with maturity T0.

Annual average returns for high basis and high momentum portfolios are respectively more

than 12% and 15% annually, and decreases monotonically down to the lowest basis and momentum

portfolios. The spread in basis-sorted portfolios is consistent with the results of Yang (2013)

and Gorton et al. (2012), although my sample composition and length are different from theirs.

Coskewness is significantly negative and skewness is positive in both sets of portfolios.

By definition, an idiosyncratic shock affects a single asset. Using portfolios, in which idiosyn-

cratic shocks tend to average out, is likely to understate the importance of idiosyncratic asymmetry.

This is an important concern for our equity portfolios because they contain a large number of stocks.

On the other hand, bond fixed term indices are built using only one representative issue at a time,
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and the small number of currencies and commodities results in concentrated quintile portfolios. I

compare in this paper the impact of return asymmetries for representative assets across different

asset classes. Interesting insights could be obtained from an analysis at the security level, but I

leave this for future work. The next section uses these test portfolios to construct return asymmetry

factors.

3.2 Building the risk factors

In this section, I first build the systematic risk factor, and then construct a risk factor that captures

idiosyncratic asymmetry. These factors along with the market portfolio are used in the next section

in time series regressions to explain expected returns for different assets.

My model shows that investors should allocate their wealth between the risk-free security, the

value-weighted market portfolio, a well-defined systematic asymmetry portfolio, and the rest of their

allocation based on the idiosyncratic asymmetry of each asset. While the systematic asymmetry

portfolio is uniquely determined, how the rest of their allocation is related to idiosyncratic asym-

metry depends on each investors’ preferences. I begin by showing how to construct the systematic

asymmetry factor, and then discuss how I capture empirically idiosyncratic asymmetry.

One possibility is to estimate the parameters of the GAT distribution and form the systematic

asymmetry factor. Instead, I propose below an estimator which uses only sample covariances and

coskewness to build the systematic asymmetry factor from the A-CAPM, and then use residual

skewness to build an idiosyncratic asymmetry factor. Observe first that the weights of the system-

atic asymmetry factor rSA in Corollary 1 are proportional to the vector of asymmetry parameters

λ standardized by the covariance matrix Σ:

ωSA =

(
1

1− σ2
gmλ

⊤Σ−1λ

)
Σ−1λ ∝ Σ−1λ. (15)

Using again the analytical convenience of the GAT distribution, Appendix A.2 shows that these

asymmetry parameters are proportional to a function of their covariance and coskewness as

λ ∝ Cos(r, rm)− 2
σ2
g

E[g]
λmCov(r, rm) (16)
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where Cos(r, rm) = E
[
(rj − E[rj ])(rm − E[rm))2

]
denotes the N × 1 vector of coskewness terms.

Substituting (16) into (15) leads to

ωSA ∝ Σ−1Cos(r, rm)− 2
σ2
g

E[g]
λmωm. (17)

Since the second term is just the market factor scaled by a constant, we can test the A-CAPM

by regressing asset returns on a constant, the market portfolio, and an approximated systematic

asymmetry factor:

r̃SA = ω̃⊤
SA (r − rf ) , where ω̃SA = kΣ−1Cos(r, rm). (18)

For simplicity, I scale the weights using the scalar k such that the realized (ex post) volatility of

this risk factor is equal to the market’s realized volatility over the whole sample.

By construction, any asymmetry left after accounting for systematic risk is idiosyncratic. For

each test portfolio, I regress its excess returns on a constant, its market portfolio, and its systematic

asymmetry factor r̃SA. Following Asness et al. (2013) and Frazzini and Pedersen (2013), I form a

long-short portfolios rIA containing all portfolios within a set of test portfolios by weighting them

according their residual skewness’ rank.

More formally, let zj be the rank of test portfolio j’s residual skewness. I set its weight ωIA,j =

zj − z̄ where z̄ is the average rank. Finally, I scale all weights such that the realized (ex post)

volatility of the idiosyncratic asymmetry factor rIA = ω⊤
IA (r − rf ) is the same as the market

portfolio’s volatility over the whole sample.

The GA-CAPM contains one risk premium for idiosyncratic asymmetry and one for idiosyncratic

variance. By constructing a factor based on residual skewness, I implicitly control for idiosyncratic

variance since skewness is the average third power of residuals standardized by their standard

deviation. Also, the risk premium for idiosyncratic asymmetry in the GA-CAPM relates to φ3,

and not skewness. However, there is a one-to-one relation between the two measures (see Appendix

A.2), and using skewness instead of an estimate of φ does not impact rIA because using one or the

other does not affect ranks.

Tables 5 and 6 present summary statistics for all market portfolios, systematic asymmetry
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and idiosyncratic asymmetry factors. Each panel reports the average excess return, volatility, and

skewness for these factors, as well as their cross-correlations. In all but one case, the risk premium

on the systematic asymmetry factor is significant. More importantly, its average excess return,

as predicted by the GA-CAPM, is strongly and positively related to the skewness of the market

portfolio. For example, it is negative for equities, currency forwards and commodity futures, but

positive for Treasury bonds for which the value-weighted market portfolio is rightly skewed.

Further economic insights are provided in Figures 1 and 2 which show the cumulative returns

of market portfolios and systematic asymmetry factors against the NBER recession dates defined

by the NBER’s Business Cycle Dating committee. In negatively skewed markets, I report the

cumulative return of a short position in the systematic asymmetry factor to facilitate comparison

with the market index. Tables 5 and 6 show that the market factor and the systematic asymmetry

factors are less than perfectly correlated. Nevertheless, the systematic asymmetry factors in equi-

ties, currencies and commodities tend to experience positive returns (the short positions in these

factors depicted in the figures fall) especially when bad times occur and the market portfolios lose in

value. This pattern is not observed for Treasuries whose market index is positively skewed. In the

next section, I formally test for the importance of return asymmetries for explaining cross-sectional

variations in expected returns.

3.3 Time series regressions

In this section, I test my asset pricing model using the market portfolio and the two risk fac-

tors constructed in the previous section. The empirical methodology closely follows Fama and

French (2012). For each group of test portfolios, I estimate the following time series regression

using monthly returns

rt,j − rt,f = αj + Ftβj + ut,j , t = (1, ..., T ) (19)

for each asset j. In this regression, αj is the average return for asset j not explained by the risk

factors, Ft is the vector of risk factors at time t, βj is asset j’s loadings on these factors, and ut,j

is an error term. I then test for the joint hypothesis that all pricing errors αj are equal to zero.

I report regression results in Table 7 for portfolios sorted by asset class specific variables, and

in Table 8 for momentum sorted portfolios. I report the F -test statistic of Gibbons, Ross, and
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Shanken (1989) (GRS) and its p-value, and the χ2 test statistic and its p-value which I estimate

by GMM using a Newey-West estimator with 3 lags for the moment conditions’ covariance matrix.

Both GRS and χ2 tests assess the null hypothesis that all pricing errors are equal to zero, but they

differ on the underlying statistical assumptions (see Cochrane, 2001, Ch. 12 for further details). I

also report the average absolute pricing error |αj | expressed in basis points per month, the average

standard error of the intercept coefficients expressed in basis points per month, and the average R2

across all regressions in Equation (19).

As benchmarks, I use the single factor CAPM, followed by other benchmarks specific to each

asset class. U.S. and international equity portfolios are tested using the Fama-French three-factor

model, in which the small-minus-big market capitalization factor for size and the high-minus-

low book-to-market ratio factor for value are added to the market portfolio. This model is then

augmented with the winner-minus-loser (previous 12-month return) factor (Carhart, 1997). These

models are referred to as FF3 and FF3+Momentum. I use factors constructed with U.S. stocks

because longer time series are available. For example, Fama and French (2012) construct size, value

and momentum factors with international stocks, but these factors start in 1990. For Treasury

bonds, I compute a slope factor which is the difference between the monthly return on the 10-year

Treasury bond minus the monthly return on the 1-year Treasury bond (see for example Fama and

French, 1993). For currency forwards, I build a high-minus-low rank-based forward discount factor

(HMLFX) which is long the higher quintile portfolios sorted on forward discount and short the

lower quintile portfolios (see Lustig et al., 2011). Based on their ranks, the five quintile portfolios

sorted from low to high forward discount have weights of −2
3 , −

1
3 , 0,

1
3 , and

2
3 . Similarly, I build

a high-minus-low basis commodity factor (HMLC) following Yang (2013). I refer to these models

respectively as CAPM+TERM, CAPM+HMLFX , and CAPM+HMLC .

The asymmetry factors r̃SA and rIA are then added sequentially to the market portfolio rm to

examine their individual impact, and the last line of each panel reports on the GA-CAPM which

includes the market portfolio and both asymmetry factors.

Consider first the results from GRS tests. First, the A-CAPM, in which the market factor is

augmented with the systematic asymmetry factor, leads to important reductions in test statistics

compared to the CAPM in all cases, except for momentum sorted currency forward portfolios for

which the reduction is marginal. Second, in five out of 10 sets of portfolios, the GA-CAPM model
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has the smallest test statistic of all models considered. In other cases, it still compares favorably

to asset-class specific benchmarks. Not surprisingly, the GA-CAPM is outperformed in some cases

when the benchmark model contains a factor built from the same variable used to sort the portfolios

on the left-hand side of the regressions. For instance, the CAPM+HMLFX model has a test statistic

value of 0.55 for currency forward portfolios sorted on forward discount versus a value of 0.72 for

the GA-CAPM. The same result holds for basis-sorted commodity futures portfolios (1.37 versus

2.63) and U.S. equity size and momentum portfolios (3.70 versus 4.71). The two other cases where

the GA-CAPM does not produce the lowest test statistics are for the Treasury bond market, but

its underperformance is marginal (7.72 versus 7.61 for maturity sorted portfolios, and 7.75 versus

7.26 for momentum sorted portfolios). Third, the GA-CAPM survives the GRS test at the 1% level

everywhere except for size and momentum sorted U.S. equity portfolios and all Treasury portfolios.

However, all models are rejected for these portfolios. Finally, note that the above conclusions are

also reached using the χ2 test.

Lower test statistics are partially explained by lower average pricing errors everywhere except

for currency forward portfolios, and by more precisely estimated pricing errors in all cases (see

columns titled average |α| and average σα). All models produce high average R2 for all equity

and Treasury portfolios. However, the increases in R2 are modest for currency forward portfolios

(0.04 to 0.19) even though the models are not rejected by the GRS and χ2 tests. Interestingly,

while the CAPM+HMLC model results in a lower test statistic than the GA-CAPM for commodity

portfolios sorted on basis, only the latter brings a large increase in explanatory power. Specifically,

the CAPM and CAPM+HMLC both have low R2s (0.03 and 0.20), while the GA-CAPM yields an

R2 of 0.55. Overall, the results in Tables 7 and 8 provide support for the importance of systematic

and idiosyncratic return asymmetry in these asset classes.

4 Conclusion

This paper derives an asset pricing model that incorporates both systematic and idiosyncratic

return asymmetries. When returns display systematic asymmetry, investors allocate their wealth

between the risk-free security, the value-weighted market portfolio, and a systematic asymmetry

portfolio tilted towards rightly skewed assets. While idiosyncratic return asymmetry commands a
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negative risk premium, the compensation for systematic asymmetry depends on whether the market

portfolio is negatively or positively skewed. Assets with positive systematic asymmetry are valuable

in a negatively skewed market because they increase the asymmetry of a portfolio. If returns on

the market portfolio are rightly skewed however, assets with negative systematic asymmetry are

valuable because they diversify systematic asymmetry shocks.

The empirical results provide support for my asset pricing model. First, realized average returns

on the systematic asymmetry factors are significant and positively related to the asymmetry of

the market portfolio, as predicted by theory. Second, time series regression results show that

the GA-CAPM, in which the market portfolio is augmented with a systematic asymmetry and an

idiosyncratic asymmetry factor, performs favorably in U.S. equities, in international equity markets,

in U.S. Treasury bonds, in currency forwards, and in commodity futures.

Systematic and idiosyncratic return asymmetry are hard to measure and to distinguish. More

sophisticated estimation methods using higher frequency returns could be used to further study

their dynamics in each of these asset classes. Also, I have analyzed return asymmetries on portfolios.

It may prove interesting in future work to examine idiosyncratic asymmetry risk at the security

level where its relative importance is likely to be larger.
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A Return Distributions

A.1 Moments of inverse gamma variables

The first three central moments of an inverse gamma distributed variable g with parameter ν,

g ∼ IG
(
ν
2 ,

ν
2

)
, are given by

E[g] =
ν

ν − 2
,

σ2
g = E[(g − E[g])2] =

2ν2

(ν − 4)(ν − 2)2
,

κg = E[(g − E[g])3] =
16ν3

(ν − 6)(ν − 4)(ν − 2)3
.

A.2 The generalized asymmetric t distribution

The stochastic representation of the N × 1 vector r − rf under GAT -distributed returns is

r − rf = E [r − rf ] + φ ◦ (g − E[g]) + λ (gm − E[g]) +
√
gmz (20)

where E [r − rf ], φ, and λ areN×1 vectors of mean, idiosyncratic asymmetry, and systematic asym-

metry parameters, ◦ denotes the Hadamard (element-by-element) product, g is a N×1 vector of in-

dependent inverse gamma variables, gm is a inverse gamma variable, z ∼ N
(
0, E[g]−1

(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

)))
where diag(φ)2 is a N by N matrix with φ2

j as diagonal elements and zero everywhere else, and g,

gm and z are independent of each other. For simplicity, all inverse gamma variables have the same

degree-of-freedom, g, gm ∼ IG
(
ν
2 ,

ν
2

)
, and hence I refer to their moments using only subscript g.

The AT distribution is obtained by setting all idiosyncratic asymmetry parameters to 0 (φj = 0

for all j = 1, ..., N). If all systematic asymmetry parameters λj are also equal to zero, we get

the symmetric t distribution. Further, if the degree-of-freedom goes to infinity, then the normal

distribution is obtained.

From the stochastic representation in (20), one can verify that

E[φ ◦ (g − E[g]) + λ (gm − E[g]) +
√
gmz] = 0,
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and

Cov(r − rf ) = Σ.

The skewness of asset j is given by

E

[(
rj − E [rj ]

σj

)3
]

=
3σ2

g

E[g]

(
λj

σj

)
+

(
κg − 3

σ4
g

E[g]

)(
λj

σj

)3

+ κg

(
φj

σj

)3

− 3
σ4
g

E[g]

(
φ2
jλj

σ3
j

)
(21)

where σj =
√

Σjj is the volatility of asset j. Finally, the coskewness of asset j with the market is

E
[
(rj − E [rj − rf ]) (rm − E [rm − rf ])

2
]

=

(
κg − 3

σ4
g

E[g]

)
λ2
mλj +

σ2
g

E[g]
σ2
mλj

+2
σ2
g

E[g]
λmCov(rj , rm). (22)

Isolating λj in the above equation, we can see that it is proportional to

λj ∝ E
[
(rj − E [rj − rf ]) (rm − E [rm − rf ])

2
]
− 2

σ2
g

E[g]
λmCov(rj , rm). (23)

This result is used to derive a moment estimator for the weights ωSA of the systematic asymmetry

factor.

When all idiosyncratic asymmetry loadings equal zero, φj = 0 for all j, we obtain the asymmetric

t distribution (Demarta and McNeil, 2005) with likelihood function

L (Θ; r − rf |φ = 0) =
21−

(ν+N)
2 K ν+N

2
(Ψ (Θ)) e(r−E[r]+E[g]λ)⊤Ω(Θ)−1λ

Γ
(
ν
2

)
(πν)

N
2 |Ω (Θ) |

1
2 (Ψ (Θ))−

ν+N
2

(
1 + ∆(Θ)

ν

) ν+N
2

(24)

where

Ω (Θ) = E[g]−1
(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

))
,

∆(Θ) = (r −E [r] + E[g]λ)⊤Ω(Θ)−1 (r −E [r] + E[g]λ),

Ψ(Θ) =

√
(ν +∆(Θ))λ⊤Ω(Θ)−1 λ,
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and K(·) is the modified Bessel function of the third kind. Unfortunately, the likelihood function

when φ ̸= 0 is unknown. However, it can be obtained by convolution:

L (Θ; r − rf ) =

∫
(0,∞)N

L (Θ; r − rf − φ ◦ g|φ = 0)

N∏
j=1

(
ν
2

) ν
2 g

− ν
2
−1

j e
− ν

2gj

Γ
(
ν
2

) dg (25)

where the last term is the density function of all independent idiosyncratic shocks gj .

A.3 Examples of GAT-distributed returns

The GAT distribution is flexible enough to capture higher order risk, including tail risk and mul-

tivariate asymmetries. I graph in Figure 3 the contour lines of its probability density function

given in Equation (25), and its implied asymmetric correlation and downside beta for four different

cases involving a hypothetical market return rm and an asset return rj . The top left graph in

panel A shows the contour lines of the probability density function when both the market and

asset j exhibit negative systematic asymmetry (λm = λj = −0.1), and no idiosyncratic asymmetry

(φm = φj = 0). In all panels, I set the expected returns to zero, the volatilities to 20%, the linear

correlation to 0.5, and the market idiosyncratic asymmetry parameter to zero.

The univariate skewness in both assets is apparent from the shape of the density function in

the lower left quadrant. The second graph below in panel A reports the threshold correlation and

downside beta. For each negative (positive) return threshold on the horizontal axis, the threshold

correlation reported on the left vertical axis is the linear correlation computed on the subset of

returns in which both returns are below (above) the threshold. For each negative (positive) return

threshold, the downside beta reported on the right vertical axis is the ratio of the covariance to the

market variance computed on the subset of returns in which the market return is below (above) this

threshold. It is a defining characteristic of the normal distribution that the threshold correlation

goes to zero as the return threshold gets further from zero, unless the linear correlation is 1 or -1.

The positive level of threshold correlation is therefore indicative of its ability to capture non-normal

tail risk. Also, the GAT distribution models the stylized fact that dependence is higher for negative

returns, as illustrated by the asymmetric pattern both in threshold correlation and downside beta.

I consider in panel B the case when asset j has positive idiosyncratic asymmetry (φj = 0.15).

The higher asymmetry for asset j is visible in the upper right quadrant of the density function, and
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in the threshold correlation for positive returns. Increasing the idiosyncratic asymmetry of asset j

increases its univariate skewness, but has little effect on both downside dependence measures, as

shown in the left part of the lower graph in panel B. This mechanism can explain how individual

stocks can have positive skewness, while the index displays negative skewness.

Panels C and D present the same two cases, but with positive systematic asymmetry for asset

j. Positive systematic asymmetry has a strong impact on downside β which shows higher values

for positive return thresholds than for negative.

B Proof of Proposition 2

The proof, which relies on the generalized Stein’s Lemma below, is given in the general case of

GAT -distributed returns. The proof of the pricing equations for ST -distributed in Equation (7)

and AT -distributed returns in Equation (9) as well as their respective Stein’s Lemma can be

obtained by applying the appropriate parameter restrictions. In the case of the AT distribution,

all idiosyncratic asymmetry parameters are equal to zero (φj = 0 for all j = 1, ..., N), whereas all

asymmetry parameters are equal to zero in the ST distribution (φj = λj = 0 for all j = 1, ..., N).

We first need the following lemma, which uses Stein’s lemma.

Lemma 1 (Generalized Stein’s Lemma). Let the N -vector X be distributed from a GAT distribution

with parameters E [r − rf ], Σ, ν, λ, and φ, and let h(X) be a differentiable RN 7→ R function such

that ∂h(X)
∂Xi

exists almost everywhere and E
[

∂
∂Xi

h(X)
]
< ∞ for i ∈ (1, ..., N). Then,

Cov (X,h(X)) = ΣEGAT ∗
[∇h(X)]− σ2

g

(
λλ⊤ + diag(φ)2

)
EGAT ∗

[∇h(X)]

+E [h(X) (gm − E[g])]λ+ E [h(X)φ ◦ (g − E[g])]

where ∇h(X) =
(
∂h(X)
∂X1

, . . . , ∂h(X)
∂XN

)⊤
is the gradient vector of function h(X), and EGAT ∗

indicates

that the expected value is taken under a different probability measure. Under GAT ∗, X has the

same stochastic representation as a GAT-distributed variable, except for gm ∼ IG
(
ν
2 ,

ν
2

)
which is

now g∗m ∼ IG
(
ν−2
2 , ν2

)
8. Note that X is no longer a GAT random variable under GAT ∗.

8All the moments of g∗m are larger than the moments of gm

E[g∗km ] =

(
ν
2

)k∏k
l=1

(
ν
2
− 1− l

) > E[gkm] =

(
ν
2

)k∏k
l=1

(
ν
2
− l

) .
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Proof. Conditional on gm and g,X is normally distributed with mean vectorE [r − rf ]+λ (gm − E[g])+

φ ◦ (g − E[g]) and covariance matrix gm
E[g]

(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

))
. We obtain by conditioning

on the inverse gamma variable gm and g

Cov (X,h(X)) = E [(X − E [r − rf ])h(X)]

= E [E [(X − E [r − rf ]− λ (gm − E[g])− φ ◦ (g −E[g]))h(X) | gm, g]]

+E [λ (gm − E[g])h(X)] + E [φ ◦ (g − E[g])h(X)]

=
(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

))
E

[
∇h(X)

gm
E[g]

]
+E [λ (gm − E[g])h(X)] + E [φ ◦ (g − E[g])h(X)] (26)

where we have used Stein’s lemma for normally distributed random vectors. Now, notice that

E

[
h (X)

gm
E[g]

]
=

∫
RN

∫
(0,∞)N+1

h (E [r − rf ] + λ (gm − E[g]) + φ ◦ (g − E[g]) +
√
gmz)

×
(

gm
E[g]

) (ν
2

) ν
2 g

− ν
2
−1

m e
− ν

2gm

Γ
(
ν
2

) N∏
j=1

(
ν
2

) ν
2 g

− ν
2
−1

j e
− ν

2gj

Γ
(
ν
2

)
×ϕN

(
z;0N ,

gm
E[g]

(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

)))
dgmdgdz

=

∫
RN

∫
(0,∞)N+1

h (E [r − rf ] + λ (gm − E[g]) + φ ◦ (g − E[g]) +
√
gmz)

×
(
ν
2

) ν−2
2 g

− ν−2
2

−1
m e

− ν
2gm

Γ
(
ν−2
2

) N∏
j=1

(
ν
2

) ν
2 g

− ν
2
−1

j e
− ν

2gj

Γ
(
ν
2

)
×ϕN

(
z;0N ,

gm
E[g]

(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

)))
dgmdgdz

= EGAT ∗
[h (X)]

where ϕN is the multivariate normal density. Substituting into equation (26) and rearranging

produces the desired results.

Let’s now consider the N -vector of first order conditions of agent i

E
[
U ′
i (Wi,1)

]
E [r − rf ] = −Cov

(
r − rf , U

′
i (Wi,1)

)
.
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Replacing the covariance by its exact expression in Lemma 1, and writing the last two terms as

covariances yields

E
[
U ′
i (Wi,1)

]
E [r − rf ] = −Wi,0E

GAT ∗ [
U ′′
i (Wi,1)

]
Σωi

+Wi,0σ
2
gE

GAT ∗ [
U ′′
i (Wi,1)

] (
λλ⊤ + diag(φ)2

)
ωi

−Cov
(
U ′
i (Wi,1) , gm

)
λ− Cov

(
U ′
i (Wi,1) , φ ◦ g

)
. (27)

Dividing both sides by −EGAT ∗
[U ′′

i (Wi,1)] and summing over all I agents gives

E [r − rf ] = Wm

(
I∑

i=1

θ−1
i

)−1

Σωm −Wm,0

(
I∑

i=1

θ−1
i

)−1

σ2
gλmλ−Wm,0

(
I∑

i=1

θ−1
i

)−1

σ2
gφ

2
m

−

(
I∑

i=1

θ−1
i

)−1

Cov

(
I∑

i=1

U ′
i (Wi,1)

−EGAT ∗ [U ′′
i (Wi,1)]

, gm

)
λ

−

(
I∑

i=1

θ−1
i

)−1

Cov

(
I∑

i=1

U ′
i (Wi,1)

−EGAT ∗ [U ′′
i (Wi,1)]

, φ ◦ g

)
(28)

where I have defined a global measure of risk aversion θi = −EGAT∗
[U ′′

i (Wi,1)]
E[U ′

i(Wi,1)]
(see Huang and

Litzenberger, 1988, Ch. 4), and where φ2
m is a vector with typical element ωm,jφ

2
j . Equation (28)

is valid for all securities, including the market portfolio rm, which leads to

E [rm − rf ] = Wm

(
I∑

i=1

θ−1
i

)−1

σ2
m −Wm,0

(
I∑

i=1

θ−1
i

)−1

σ2
gλ

2
m −Wm,0

(
I∑

i=1

θ−1
i

)−1

σ2
gω

⊤
mφ2

m

−

(
I∑

i=1

θ−1
i

)−1

Cov

(
I∑

i=1

U ′
i (Wi,1)

−EGAT ∗ [U ′′
i (Wi,1)]

, gm

)
λm

−

(
I∑

i=1

θ−1
i

)−1

Cov

(
I∑

i=1

U ′
i (Wi,1)

−EGAT ∗ [U ′′
i (Wi,1)]

, ω⊤
m(φ ◦ g)

)
(29)

Define γ = Wm,0

(∑I
i=1 θ

−1
i

)−1
as the aggregate global relative risk aversion, and substitute

equation (29) into (28) to get

E [r − rf ] = γCov (r, rm) +

[
E [rm − rf ]− γσ2

m + γσ2
gω

⊤
mφ2

m + Cov
(
θ̃−1, ω⊤

m(φ ◦ g)
)] λ

λm

−γσ2
gφ

2
m − Cov

(
θ̃−1, φ ◦ g

)
(30)
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where

θ̃−1 =

(
I∑

i=1

E [U ′
i (Wi,1)]

−EGAT ∗ [U ′′
i (Wi,1)]

)−1 I∑
i=1

U ′
i (Wi,1)

−EGAT ∗ [U ′′
i (Wi,1)]

.

The final step consists in separating the last term in Equation (30) into an idiosyncratic variance

and an idiosyncratic asymmetry effect. I use a Taylor expansion of U ′
i (Wi,1) around E[Wi,1] =

Wi,0(1 + rf + ω⊤
i E [r − rf ]) up to the third order :

U ′
i (Wi,1) ≈ U ′

i (E[Wi,1]) + U ′′
i (E[Wi,1])Wi,0ω

⊤
i (r − E [r])

+
U ′′′
i (E[Wi,1])W

2
i,0

2

(
ω⊤
i (r − E [r])

)2
= T0,i + T1,iω⊤

i (r − E [r]) + T2,i
(
ω⊤
i (r − E [r])

)2
(31)

where T0,i, T1,i, and T2,i are constants. Substituting the Taylor expansion into the last term in

Equation (30), we get

−Cov
(
θ̃−1, φ ◦ g

)
= −

(
I∑

i=1

E [U ′
i (Wi,1)]

−EGAT ∗ [U ′′
i (Wi,1)]

)−1

×

[
Cov

(
I∑

i=1

T1,iω⊤
i (r − E [r])

−EGAT ∗ [U ′′
i (Wi,1)]

, φ ◦ g

)

+Cov

(
I∑

i=1

T2,i
(
ω⊤
i (r − E [r])

)2
−2EGAT ∗ [U ′′

i (Wi,1)]
, φ ◦ g

)]
(32)

Consider the first covariance inside the brackets for asset j

Cov

(
I∑

i=1

T1,iω⊤
i (r − E [r])

−EGAT ∗ [U ′′
i (Wi,1)]

, φjgj

)
= E

[
I∑

i=1

T1,iω⊤
i (r − E [r])

−EGAT ∗ [U ′′
i (Wi,1)]

φj(gj − E[g])

]

=

(
I∑

i=1

T1,iωi,j

−EGAT ∗ [U ′′
i (Wi,1)]

)
σ2
gφ

2
j

where the last equality is obtained using the fact that the shock gj is independent of all other
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shocks. Similarly, the second covariance for asset j becomes

Cov

(
I∑

i=1

T2,i
(
ω⊤
i (r − E [r])

)2
−EGAT ∗ [U ′′

i (Wi,1)]
, φjgj

)
= E

[
I∑

i=1

T2,i
(
ω⊤
i (r − E [r])

)2
−EGAT ∗ [U ′′

i (Wi,1)]
φj(gj − E[g])

]

=

(
I∑

i=1

T2,iω2
i,j

−EGAT ∗ [U ′′
i (Wi,1)]

)
κgφ

3
j

where the sum is always positive under decreasing absolute risk aversion (U ′′′
i > 0). Finally, the

pricing equation for asset j is

E [rj − rf ] = γCov (rj , rm) +

[
E [rm − rf ]− γσ2

m + γσ2
g

N∑
k=1

ω2
m,kφ

2
k +ASA

]
λj

λm

+AIV
j σ2

gφ
2
j −AIA

j κgφ
3
j (33)

where

ASA = Cov
(
θ̃−1, ω⊤

m(φ ◦ g)
)
,

AIV
j =

(
I∑

i=1

E [U ′
i (Wi,1)]

−EGAT ∗ [U ′′
i (Wi,1)]

)−1( I∑
i=1

(
−U ′′

i (E[Wi,1])

−EGAT ∗ [U ′′
i (Wi,1)]

)
Wi,0ωi,j

)
− γωm,j ,

AIA
j =

(
I∑

i=1

E [U ′
i (Wi,1)]

−EGAT ∗ [U ′′
i (Wi,1)]

)−1 I∑
i=1

(
U ′′′
i (E[Wi,1])

−2EGAT ∗ [U ′′
i (Wi,1)]

)
W 2

i,0ω
2
i,j . (34)

C Portfolio Implications

I derive here the portfolio holdings in the GA-CAPM. I consider then the case with no idiosyncratic

asymmetry which leads to the three-fund separation obtained in the A-CAPM in Corollary 1.

Substituting the equilibrium risk premia in Equation (28) into investor i’s first order condition
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in Equation (27), we get an allocation of

ωi = fm,iωm

+fSA,i

(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

))−1
λ

+
1

Wi,0

(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

))−1
[
Cov

(
U ′
i (Wi,1)

−EGAT ∗ [U ′′
i (Wi,1)]

, φ ◦ g
)

−θ−1
i

(
I∑

i=1

θ−1
i

)−1

Cov

(
I∑

i=1

U ′
i (Wi,1)

−EGAT ∗ [U ′′
i (Wi,1)]

, φ ◦ g

)]

where

fm,i =
γ

θiWi,0
,

fSA,i =
1

Wi,0

[
Cov

(
U ′
i (Wi,1)

−EGAT ∗ [U ′′
i (Wi,1)]

, gm

)

−θ−1
i

(
I∑

i=1

θ−1
i

)−1

Cov

(
I∑

i=1

U ′
i (Wi,1)

−EGAT ∗ [U ′′
i (Wi,1)]

, gm

)]
.

Using the same Taylor expansion as in Equation (31), I separate the last term into two portfolios:

ωIV,i =
1

Wi,0

(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

))−1

×

[U ′′
i (E[Wi,1])Wi,0ωi,j

−EGAT ∗ [U ′′
i (Wi,1)]

− θ−1
i

(
I∑

k=1

θ−1
k

)−1 I∑
k=1

U ′′
k (E[Wk]) ekωk,j

−EGAT ∗ [U ′′
k (Wk)

]] ◦ φ2σ2
g



where φ2 is a N × 1 vector having φ2
j as elements, and

ωIA,i =
1

Wi,0

(
Σ− σ2

g

(
λλ⊤ + diag(φ)2

))−1

×

[U ′′′
i (E[Wi,1])W

2
i,0ω

2
i,j

−2EGAT ∗ [U ′′
i (Wi,1)]

− θ−1
i

(
I∑

k=1

θ−1
k

)−1 I∑
k=1

U ′′′
k (E[Wk]) e

2
kω

2
k,j

−2EGAT ∗ [U ′′
k (Wk)

]] ◦ φ3κ3g



where φ3 is a N × 1 vector having φ3
j as elements.
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Finally, to obtain the three-fund separation theorem in Corollary 1, set all idiosyncratic asym-

metry parameters to 0 (φj = 0 for all j = 1, ..., N). The weights of the systematic asymmetry

factor are then

ωSA =
(
Σ− σ2

gλλ
⊤
)−1

λ

=

(
1

1− σ2
gλ

⊤Σ−1λ

)
Σ−1λ.

where the last equality is obtained using the Sherman-Morrison formula.

D Data Description

This section describes the sources and construction methodologies of market and test portfolios.

The momentum measures used below always refer to the lagged one year return dropping the most

recent month (using returns from month t− 12 to t− 2).

The U.S. equity portfolios and the U.S. equity factors (size, value, and momentum) are obtained

from Ken French’s website, and the market portfolio is the value-weighted portfolio of all NYSE,

AMEX, and NASDAQ stocks. The 25 size and momentum portfolio compositions are formed

each month, and they contain all NYSE, AMEX, and NASDAQ stocks for which market equity

is available at the end of last month, and returns are available over the past 12 months. The

portfolios are the intersection of five size (market capitalization) and five momentum portfolios.

Both measures use the quintiles from NYSE stocks.

My sample of developed country equity markets consists of Datastream indices for 16 countries:

Australia, Austria, Belgium, Canada, Denmark, France, Germany, Hong Kong, Ireland, Italy,

Japan, Netherlands, Singapore, Switzerland, the United Kingdom, and the United States. I obtain

total returns and market values in U.S. dollars starting in January 1973. The value-weighted market

portfolio contains all 16 market indices and is formed using the lagged market values. Each month

t, I sort countries into five value-weighted portfolios based on momentum quintiles.

Returns for the U.S. Treasury bond portfolios are the monthly holding period returns of the

fixed-term indices obtained from CRSP. We use indices for maturities of 1, 2, 5, 7, 10, 20, and 30

years. At the end of each month, a representative bond for each maturity is chosen and held for
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the next month. A representative bond is the most recently issued among all that are fully taxable,

non-callable, non-flower, and at least 6 months from, but closest to the maturity date. Flower

bonds are considered if no bond meets these criteria.

I construct a value-weighted market portfolio for the U.S. Treasury market. For each Treasury

issue j with an available total face amount outstanding from CRSP (TOTOUTt,j), I compute a

return

rt,j =


0.5(BIDt+ASKt−BIDt−1−ASKt−1)+ACCINTt−ACCINTt−1+PDINTt

0.5(BIDt−1+ASKt−1)+ACCINTt−1
if ASKt is not missing

BIDt−BIDt−1+ACCINTt−ACCINTt−1+PDINTt

BIDt−1+ACCINTt−1
if ASKt is missing

and an end-of-month price

Pt,j =


BIDt+ASKt

2 +ACCINTt if ASKt is not missing

BIDt +ACCINTt if ASKt is missing

where BIDt, ASKt, ACCINTt, and PDINTt are the bid price, ask price, accrued interest and

coupon interest payment at time t. This follows the same procedure as how monthly holding period

returns are computed for fixed term indices. Using the total face amount outstanding TOTOUTt,j ,

I get a market value as

MVt,j = Pt,j ×
TOTOUTt,j

100
.

Then, I obtain the return of the value-weighted U.S. Treasury market index by computing

rTreasury
m,t =

Nt∑
j=1

(
MVt,j∑Nt
k=1MVt,k

)
rt,j

where Nt is the number of different Treasury issues for month t.

I obtain spot exchange rates and one-month forward rates from Datastream for 16 countries:

Belgium, France, Germany, Italy, and Netherlands (all replaced by the Euro starting in January

1999), Australia, Canada, Denmark, Hong Kong, Japan, New Zealand, Norway, Singapore, Sweden,

Switzerland, and the United Kingdom. All rates are expressed in U.S. dollar per unit of foreign

currency, and are collected by Barclays Bank International. Not all exchange rates are available

each month; we have a minimum of seven and a maximum of 15 over time. The introduction
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of the euro is responsible for a decrease in the number of currencies available. Following Lettau

et al. (2013), I use the value-weighted U.S. equity index as the market portfolio.

My test portfolio construction methodology is inspired by Lustig et al. (2011). For each currency

j, I compute the return on a position that goes long forward one unit of foreign currency at the end

of month t− 1, and that sells the foreign currency at the spot rate at the end of month t, creating

an excess return for month t of

rFX
t,j = St,j − Ft−1,j .

Then, I compute using daily quotes within month t− 1 the average forward discount FDt−1,j :

FDt−1,j =
1

Dt−1

Dt−1∑
k=1

ln

(
Sd
k,j

F d
k,j

)

where F d
k and Sd

k are the one-month and spot rates on day k in month t−1, and Dt−1 is the number

of days in month t−1. I use a monthly average of daily forward discounts to prevent end-of-month

erroneous quotes. Finally, I sort currencies available in month t into five quintile portfolios based on

their previous month average forward discount, and compute the equally weighted average return

for each quintile. Using the same methodology, I construct five equally weighted portfolios sorted

by momentum.

I use the composition of the Goldman Sachs Commodity Index (GSCI) as my sample of com-

modity futures. This index contains 24 traded contracts, covering 6 categories: energy (WTI crude

oil, Brent crude oil, RBOB gasoline, heating oil, gas oil, and natural gas), industrial metals (alu-

minum, copper, lead, nickel, and zinc), precious metals (gold and silver), agriculture - grains and

oilseeds (wheat, Kansas wheat, corn, and soybeans), agriculture - softs (cotton, sugar, coffee, and

cocoa), and livestock (feeder cattle, live cattle, and lean hogs). As for currencies, not all commodi-

ties are available over the whole sample. The sample starts with seven commodities, and ultimately

reaches 24 in 2005. As for currency forwards, I use the value-weighted U.S. equity index as the

market portfolio.

I follow Yang (2013) in constructing five quintile portfolios sorted on basis. First, I obtain future

quotes from Bloomberg for all available maturities. For each commodity futures, I construct a time

series of total returns by investing each month in the futures contract with maturity T0, where T0
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is the nearest maturity coming later than the end of the month. I also compute for month t and

commodity j a one-year basis Bt,j as

Bt,j =

ln

(
F

T0
t,j

F
T12
t,j

)
T12 − T0

where F T12
t,j is the price of the futures contract with maturity T12, which is closest to one year ahead,

and F T0
t,j is the price of the futures contract with maturity T0. Each month, I compute the equally

weighted average returns of five portfolios sorted by the quintiles of the previous month basis. I

also construct five equally weighted portfolios sorted each month by momentum.
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Figure 1 Market Portfolio and Systematic Asymmetry Factors in Equity Markets
I graph the log of cumulative returns of the value-weighted market portfolio, the systematic asymmetry
factor based on test portfolios sorted by asset class specific variables, and the systematic asymmetry factor
based on test portfolios sorted by momentum. The top graph plots factors for the U.S. equity market, and
the bottom reports on developed equity markets. The gray bars indicate official NBER recession dates. Final
values of 1$ invested in each factor are reported on the right axis. I show short positions in the systematic
asymmetry factors, such that their cumulative returns are comparable to the market portfolio.

44



65 70 75 80 85 90 95 00 05 10
−0.5

0

0.5

1
$2.22
$2.46

$1.57

C
um

ul
at

iv
e 

lo
g 

re
tu

rn

U.S. Treasury Bonds

 

 

Market factor rm

Systematic asymmetry factor r̃SA

Momentum-based systematic asymmetry factor r̃SA

85 90 95 00 05 10
−1

0

1

2

3

$5.26
$7.10

$0.92

C
um

ul
at

iv
e 

lo
g 

re
tu

rn

Currency Forwards

75 80 85 90 95 00 05 10
−1

0

1

2

3

$6.35
$6.29

$10.77

C
um

ul
at

iv
e 

lo
g 

re
tu

rn

Commodity Futures

 

 

Market factor rm

Short systematic asymmetry factor r̃SA

Short momentum-based systematic asymmetry factor r̃SA

Figure 2 Market Portfolio and Systematic Asymmetry Factors in the Bond, FX, and
Commodity Markets
I graph the log of cumulative returns of the value-weighted market portfolio, the systematic asymmetry
factor based on test portfolios sorted by asset class specific variables, and the systematic asymmetry factor
based on test portfolios sorted by momentum. The top graph plots factors for the U.S. Treasury market, the
middle graph for the currency market, and the bottom for the commodity market. The gray bars indicate
official NBER recession dates. Final values of 1$ invested in each factor are reported on the right axis.
For currency forwards and commodity futures, I show short positions in the systematic asymmetry factors,
such that their cumulative returns are comparable to the market portfolio. I graph long positions in the
systematic asymmetry factors in the Treasury market which displays positive return asymmetry.
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Figure 3 Density Function, Threshold Correlation and Downside Beta of the GAT
Distribution
In each panel, I present the density contour plots for the GAT distribution in the top graph, and its threshold
correlation (left vertical axis) and downside β functions (right vertical axis) in the bottom graph. The top two
panels report on the case with negative systematic asymmetry risk for asset j (λj=-0.1), and the bottom two
panels on the case with positive loading (λj=0.1). The left two panels report on the case with no idiosyncratic
asymmetry risk for asset j (φj=0), and the right two panels on the case with positive asymmetry (φj=0.15).
In all panels, the expected return is set to 0, the volatility to 20%, the market systematic asymmetry risk
loading to −0.1, the market idiosyncratic asymmetry risk loading to 0, and the correlation to 0.5. For each
negative (positive) return threshold on the horizontal axis, the threshold correlation is the linear correlation
computed on the subset of returns in which both returns are below (above) the threshold. For each negative
(positive) return threshold, the downside beta is the ratio of the covariance to the market variance computed
on the subset of returns in which the market return is below (above) this threshold.
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Test Annualized Mean Annualized Market Coskewness
Portfolio Excess Return(%) Volatility (%) β Skewness (x106)

Panel A: 10 U.S. Equity Industry Portfolios - 07/1961 to 12/2012

Consumer Non-Durables 7.37 15.15 0.81 −0.30∗∗ −23.01∗∗

Consumer Durables 5.62 21.95 1.13 0.17 −33.88∗∗

Manufacturing 6.07 17.37 1.04 −0.45∗∗ −29.47∗∗

Energy 8.11 18.68 0.80 −0.01 −25.09∗∗

Business Equipment 6.10 22.93 1.27 −0.20∗ −29.86∗∗

Telecommunications 4.97 16.21 0.77 −0.15 −20.65∗∗

Wholesale 7.00 18.23 1.01 −0.27∗∗ −28.76∗∗

Healthcare 7.11 17.31 0.85 0.04 −16.63∗∗

Utilities 4.91 14.02 0.54 −0.11 −6.22∗∗

Other 5.81 18.57 1.10 −0.43∗∗ −29.49∗∗

Correlation with E[r] 0.07 0.03 0.06 −0.20

Panel B: 16 Developed Equity Market Portfolios - 02/1973 to 12/2012

Australia 8.41 25.02 1.05 −0.72∗∗ −55.02∗∗

Austria 6.89 23.42 0.78 0.31∗∗ −55.05∗∗

Belgium 7.17 20.39 0.90 −0.40∗∗ −38.06∗∗

Canada 6.31 19.17 0.94 −0.57∗∗ −38.27∗∗

Denmark 8.48 20.49 0.82 −0.22 −45.68∗∗

France 8.45 23.39 1.10 −0.22 −28.82∗∗

Germany 6.54 20.93 0.97 −0.32∗∗ −42.91∗∗

Hong Kong 11.88 34.06 1.16 0.45∗∗ −59.30∗∗

Ireland 7.94 25.04 1.10 0.22∗ −28.45∗∗

Italy 5.72 26.38 0.98 0.12 −33.61∗∗

Japan 3.97 21.29 0.99 0.29∗ −11.36∗∗

Netherlands 7.91 19.34 1.03 −0.78∗∗ −45.09∗∗

Singapore 7.56 29.03 1.19 0.57∗∗ −35.27∗∗

Switzerland 7.46 17.88 0.85 −0.36∗∗ −29.62∗∗

United Kingdom 8.01 22.44 1.08 1.06∗∗ −11.47∗∗

United States 5.66 15.79 0.88 −0.42∗∗ −27.15∗∗

Correlation with E[r] 0.59 0.42 0.12 −0.55

Table 1 Summary Statistics For Equity Portfolios
I report sample annualized average excess returns, annualized volatility, market β, skewness, and coskewness
with the market of monthly excess returns. Panel A reports on 10 industry sorted U.S. equity portfolios,
and panel B on 16 developed country equity markets. The market portfolio for U.S. equity portfolios is
the CRSP value-weighted market portfolio. The market portfolio for international equity portfolios is the
value-weighted portfolio with all country indices. In each panel, I report the cross-sectional correlation of
each measure with average excess returns. I compute bootstrap p-values for the null hypotheses of zero
skewness and zero non-normal coskewness. I simulate 10,000 bivariate normal vectors using the sample
mean and covariance matrix of the market and asset returns to obtain bootstrapped statistics. ** and *
denote significance at the 1% and 5% level.
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Test Annualized Mean Annualized Market Coskewness
Portfolio Excess Return(%) Volatility (%) β Skewness (x106)

Panel A: 7 U.S. Treasury Portfolios Sorted on Maturity - 07/1961 to 12/2012

1yr 1.03 1.59 0.40 1.36∗∗ 0.25∗∗

2yr 1.28 2.81 0.78 0.94∗∗ 0.42∗∗

5yr 1.94 5.30 1.62 0.15 0.67∗∗

7yr 2.42 6.44 1.98 0.26∗∗ 0.84∗∗

10yr 2.20 7.67 2.30 0.25∗∗ 0.93∗∗

20yr 2.69 10.21 3.02 0.41∗∗ 1.51∗∗

30yr 2.52 11.39 3.28 0.49∗∗ 1.54∗∗

Correlation with E[r] 0.93 0.95 −0.81 0.91

Panel B: 5 Currency Forward Portfolios Sorted on Forward Discount - 11/1983 to 12/2012

Low 0.43 9.03 −0.01 0.31∗ 14.28∗∗

2 0.99 9.13 0.06 −0.14 5.48∗∗

3 2.86 9.08 0.10 −0.24 1.46∗∗

4 4.46 9.39 0.14 −0.30∗ −1.89∗∗

High 5.78 11.27 0.18 −0.30∗ −8.00∗∗

Correlation with E[r] 0.79 0.97 −0.78 −0.95

Panel C: 5 Commodity Futures Portfolios Sorted on Basis - 01/1970 to 12/2012

Low 0.40 21.46 0.15 0.70∗∗ −14.16∗∗

2 4.18 21.45 0.20 1.69∗∗ −18.71∗∗

3 6.56 21.60 0.19 0.26∗ −21.76∗∗

4 9.57 19.41 0.16 0.22∗ −9.54∗∗

High 12.89 23.24 0.09 0.52∗∗ −14.68∗∗

Correlation with E[r] 0.20 −0.61 −0.43 0.25

Table 2 Summary Statistics For Bonds, FX, and Commodities
I report sample annualized average excess returns, annualized volatility, market β, skewness, coskewness with
the market of monthly excess returns. Panel A reports on seven maturity sorted U.S. Treasury constant
maturity indices, panel B on five forward discount sorted portfolios of currency forwards, and panel C
on five basis sorted portfolios of commodity futures. The market portfolio for U.S. Treasury indices is
the value-weighted portfolio of all Treasury issues. The market portfolio for currency forward portfolios
and commodity futures portfolios is the value-weighted U.S. equity portfolio. In each panel, I report the
cross-sectional correlation of each measure with average excess returns. I compute bootstrap p-values for
the null hypotheses of zero skewness and zero non-normal coskewness. I simulate 10,000 bivariate normal
vectors using the sample mean and covariance matrix of the market and asset returns to obtain bootstrapped
statistics. ** and * denote significance at the 1% and 5% level.
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Test Annualized Mean Annualized Market Coskewness
Portfolio Excess Return(%) Volatility (%) β Skewness (x106)

Panel A: 25 U.S. Equity Portfolios Sorted on Size and Momentum - 07/1961 to 12/2012

Small - Loser −0.54 28.08 1.37 0.89∗∗ −38.14∗∗

Small - Momentum 2 7.39 20.58 1.05 0.11 −38.89∗∗

Small - Momentum 3 10.60 18.97 0.99 −0.27∗∗ −42.56∗∗

Small - Momentum 4 12.01 19.15 1.00 −0.56∗∗ −48.23∗∗

Small - Winner 16.06 23.55 1.21 −0.43∗∗ −58.53∗∗

Size 2 - Loser 0.89 27.52 1.45 0.62∗∗ −34.09∗∗

Size 2 - Momentum 2 7.05 20.55 1.12 0.04 −33.53∗∗

Size 2 - Momentum 3 9.14 18.38 1.03 −0.41∗∗ −36.23∗∗

Size 2 - Momentum 4 11.42 18.79 1.05 −0.59∗∗ −42.99∗∗

Size 2 - Winner 14.10 23.47 1.28 −0.40∗∗ −54.26∗∗

Size 3 - Loser 2.22 25.83 1.37 0.45∗∗ −22.00∗∗

Size 3 - Momentum 2 6.40 19.33 1.10 −0.04 −26.86∗∗

Size 3 - Momentum 3 7.77 17.64 1.01 −0.34∗∗ −31.77∗∗

Size 3 - Momentum 4 8.64 17.39 1.00 −0.74∗∗ −40.89∗∗

Size 3 - Winner 13.66 21.86 1.21 −0.52∗∗ −49.08∗∗

Size 4 - Loser 1.46 25.44 1.34 0.40∗∗ −17.18∗∗

Size 4 - Momentum 2 6.13 19.35 1.11 −0.03 −23.93∗∗

Size 4 - Momentum 3 7.14 17.01 1.00 −0.28∗∗ −26.86∗∗

Size 4 - Momentum 4 8.99 16.70 0.99 −0.51∗∗ −30.06∗∗

Size 4 - Winner 11.84 20.47 1.14 −0.54∗∗ −46.49∗∗

Large - Loser 1.04 23.70 1.24 0.20∗ −12.65∗∗

Large - Momentum 2 4.83 17.23 0.94 0.13 −8.57∗∗

Large - Momentum 3 3.95 15.33 0.90 −0.30∗∗ −24.61∗∗

Large - Momentum 4 6.00 15.14 0.89 −0.19 −21.72∗∗

Large - Winner 8.83 18.32 1.02 −0.42∗∗ −32.78∗∗

Correlation with E[r] −0.33 −0.32 −0.83 −0.77

Panel B: 5 Developed Equity Market Portfolios Sorted on Momentum - 02/1973 to 12/2012

Loser 0.71 22.73 1.05 1.17∗∗ 1.35∗∗

2 4.42 19.12 0.97 −0.34∗∗ −23.94∗∗

3 9.01 17.32 0.96 −0.36∗∗ −27.03∗∗

4 9.51 17.86 0.93 −0.46∗∗ −31.32∗∗

Winner 6.91 20.80 1.02 −1.18∗∗ −47.65∗∗

Correlation with E[r] −0.86 −0.80 −0.75 −0.74

Table 3 Summary Statistics For Momentum Sorted Equity Portfolios
I report sample annualized average excess returns, annualized volatility, market β, skewness, coskewness
with the market of monthly excess returns. Panel A reports on 25 size and momentum sorted U.S. equity
portfolios, and panel B on five momentum sorted value-weighted portfolios of 16 developed country equity
markets. The market portfolio for U.S. equity portfolios is the CRSP value-weighted market portfolio. The
market portfolio for international equity portfolios is the value-weighted portfolio with all country indices. In
each panel, I report the cross-sectional correlation of each measure with average excess returns. I compute
bootstrap p-values for the null hypotheses of zero skewness and zero non-normal coskewness. I simulate
10,000 bivariate normal vectors using the sample mean and covariance matrix of the market and asset
returns to obtain bootstrapped statistics. ** and * denote significance at the 1% and 5% level.
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Test Annualized Mean Annualized Market Coskewness
Portfolio Excess Return(%) Volatility (%) β Skewness (x106)

Panel A: 3 U.S. Treasury Portfolios Sorted on Momentum - 01/1962 to 12/2012

Loser 1.44 7.26 1.78 0.59∗∗ 0.91∗∗

2 2.05 6.34 1.93 0.41∗∗ 0.88∗∗

Winner 2.58 7.69 2.01 0.25∗ 0.87∗∗

Correlation with E[r] 0.28 0.99 −1.00 −0.96

Panel B: 5 Currency Forward Portfolios Sorted on Momentum - 11/1984 to 12/2012

Loser 1.67 9.89 0.13 0.28∗ −2.07∗∗

2 3.95 10.08 0.09 −0.10 1.92∗∗

3 3.99 9.69 0.07 −0.21 5.75∗∗

4 4.46 9.57 0.06 −0.12 7.31∗∗

Winner 4.72 9.49 0.13 −0.27∗ −10.90∗∗

Correlation with E[r] −0.53 −0.39 −0.96 0.02

Panel C: 5 Commodity Futures Portfolios Sorted on Momentum - 01/1970 to 12/2012

Loser −1.15 22.19 0.21 0.80∗∗ −18.11∗∗

2 1.90 18.53 0.14 0.93∗∗ −17.06∗∗

3 6.86 19.26 0.12 0.88∗∗ −10.20∗∗

4 11.76 20.85 0.13 1.63∗∗ −21.89∗∗

Winner 15.37 28.08 0.19 0.73∗∗ −19.69∗∗

Correlation with E[r] 0.60 −0.20 0.28 −0.31

Table 4 Summary Statistics For Momentum Sorted Portfolios of Bonds, FX, and
Commodities
I report sample annualized average excess returns, annualized volatility, market β, skewness, coskewness
with the market of monthly excess returns. Panel A reports on three momentum sorted U.S. Treasury
constant maturity indices, panel B on five momentum sorted portfolios of currency forwards, and panel
C on five momentum portfolios of commodity futures. The market portfolio for U.S. Treasury indices is
the value-weighted portfolio of all Treasury issues. The market portfolio for currency forward portfolios
and commodity futures portfolios is the value-weighted U.S. equity portfolio. In each panel, I report the
cross-sectional correlation of each measure with average excess returns. I compute bootstrap p-values for
the null hypotheses of zero skewness and zero non-normal coskewness. I simulate 10,000 bivariate normal
vectors using the sample mean and covariance matrix of the market and asset returns to obtain bootstrapped
statistics. ** and * denote significance at the 1% and 5% level.
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Annualized Mean Annualized Correlation Correlation
Risk Factor Excess Return(%) Volatility (%) Skewness with r̃SA with rIA

Panel A: 10 U.S. Equity Industry Portfolios - 07/1961 to 12/2012

Market factor rm 5.44∗∗ 15.63 −0.50∗∗ −0.90 0.30
Systematic asymmetry factor r̃SA −6.30∗∗ 15.63 0.58∗∗ −0.43
Idiosyncratic asymmetry factor rIA −0.21 15.63 0.26∗∗

Panel B: 16 Developed Equity Market Portfolios - 02/1973 to 12/2012

Market factor rm 5.15∗ 15.36 −0.46∗∗ −0.62 0.07
Systematic asymmetry factor r̃SA −5.92∗∗ 15.36 1.06∗∗ −0.08
Idiosyncratic asymmetry factor rIA 2.20 15.36 0.72∗∗

Panel C: 7 U.S. Treasury Portfolios Sorted on Maturity - 07/1961 to 12/2012

Market factor rm 1.60∗∗ 3.14 0.31∗∗ 0.47 0.87
Systematic asymmetry factor r̃SA 1.80∗∗ 3.14 2.15∗∗ 0.35
Idiosyncratic asymmetry factor rIA 0.57 3.14 0.51∗∗

Panel D: 5 Currency Forward Portfolios Sorted on Forward Discount - 11/1983 to 12/2012

Market factor rm 6.98∗∗ 15.77 −0.83∗∗ −0.30 −0.07
Systematic asymmetry factor r̃SA −8.01∗∗ 15.77 0.86∗∗ 0.23
Idiosyncratic asymmetry factor rIA 1.95 15.77 0.52∗∗

Panel E: 5 Commodity Futures Portfolios Sorted on Basis - 01/1970 to 12/2012

Market factor rm 5.63∗ 16.16 −0.53∗∗ −0.17 −0.01
Systematic asymmetry factor r̃SA −5.58∗ 16.16 −0.20 0.03
Idiosyncratic asymmetry factor rIA −0.46 16.16 0.75∗∗

Table 5 Summary Statistics for Risk Factors
I report for all asset classes sample annualized average excess returns, annualized volatility, skewness, and
cross-correlations for the value-weighted market portfolio, the systematic asymmetry factor, and the id-
iosyncratic asymmetry factor constructed in Section 3.2. Asymmetry factors are constructed based on test
portfolios sorted by asset class specific variables, and scaled such that their realized (ex post) volatility is
equal to the market portfolio sample volatility. The market portfolio for U.S. equity, currency forward,
and commodity futures portfolios is the CRSP value-weighted market portfolio. The market portfolio for
international equity portfolios is the value-weighted portfolio with all country indices. The market portfolio
for U.S. Treasury indices is the value-weighted portfolio of all Treasury issues. I test for the null hypothesis
of zero average excess returns. I compute bootstrap p-values for the null hypotheses of zero skewness. I
simulate 10,000 normally distributed vectors using the sample mean and covariance matrix of the market
and factors returns to obtain bootstrapped statistics. ** and * denote significance at the 1% and 5% level.
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Annualized Mean Annualized Correlation Correlation
Risk Factor Excess Return(%) Volatility (%) Skewness with r̃SA with rIA

Panel A: 25 U.S. Equity Portfolios Sorted on Size and Momentum - 07/1961 to 12/2012

Market factor rm 5.44∗∗ 15.63 −0.50∗∗ −0.61 0.34
Systematic asymmetry factor r̃SA −8.22∗∗ 15.63 1.23∗∗ −0.25
Idiosyncratic asymmetry factor rIA −2.24 15.63 1.46∗∗

Panel B: 5 Developed Equity Market Portfolios Sorted on Momentum - 02/1973 to 12/2012

Market factor rm 5.15∗ 15.36 −0.46∗∗ −0.72 0.06
Systematic asymmetry factor r̃SA −8.22∗∗ 15.36 0.92∗∗ 0.52
Idiosyncratic asymmetry factor rIA −5.16∗ 15.36 0.30∗∗

Panel C: 3 U.S. Treasury Portfolios Sorted on Momentum - 01/1962 to 12/2012

Market factor rm 1.61∗∗ 3.16 0.30∗∗ 0.95 −0.05
Systematic asymmetry factor r̃SA 0.93∗ 3.16 0.39∗∗ 0.07
Idiosyncratic asymmetry factor rIA −0.34 3.16 0.26∗∗

Panel D: 5 Currency Forward Portfolios Sorted on Momentum - 11/1984 to 12/2012

Market factor rm 7.38∗∗ 15.83 −0.89∗∗ −0.26 0.01
Systematic asymmetry factor r̃SA −0.96 15.83 0.42∗∗ 0.18
Idiosyncratic asymmetry factor rIA −4.45 15.83 0.55∗∗

Panel E: 5 Commodity Futures Portfolios Sorted on Momentum - 01/1970 to 12/2012

Market factor rm 5.63∗ 16.16 −0.53∗∗ −0.16 −0.03
Systematic asymmetry factor r̃SA −6.82∗∗ 16.16 −0.60∗∗ 0.16
Idiosyncratic asymmetry factor rIA 7.03∗∗ 16.16 0.65∗∗

Table 6 Summary Statistics for Risk Factors Based on Momentum Sorted Portfolios
I report for all asset classes sample annualized average excess returns, annualized volatility, skewness, and
cross-correlations for the value-weighted market portfolio, the systematic asymmetry factor, and the id-
iosyncratic asymmetry factor constructed in Section 3.2. Asymmetry factors are constructed based on test
portfolios sorted by momentum, and scaled such that their realized (ex post) volatility is equal to the market
portfolio sample volatility. The market portfolio for U.S. equity, currency forward, and commodity futures
portfolios is the CRSP value-weighted market portfolio. The market portfolio for international equity port-
folios is the value-weighted portfolio with all country indices. The market portfolio for U.S. Treasury indices
is the value-weighted portfolio of all Treasury issues. I test for the null hypothesis of zero average excess
returns. I compute bootstrap p-values for the null hypotheses of zero skewness. I simulate 10,000 normally
distributed vectors using the sample mean and covariance matrix of the market and factors returns to obtain
bootstrapped statistics. ** and * denote significance at the 1% and 5% level.
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GRS p-value χ2 p-value Average Average Average
Model Statistic (%) Statistic (%) |α| (bps) σα (bps) R2

Panel A: 10 U.S. Equity Industry Portfolios - 07/1961 to 12/2012
CAPM 2.13 2.03 20.96 2.13 12.79 0.119 0.66
FF3 4.05 0.00 40.50 0.00 17.23 0.113 0.70
FF3 + Momentum 3.64 0.01 34.75 0.01 15.33 0.115 0.70
A-CAPM 1.91 4.10 18.69 4.44 13.21 0.114 0.69
CAPM + rIA 2.05 2.64 20.97 2.13 10.78 0.108 0.72
GA-CAPM 1.67 8.44 17.11 7.19 10.36 0.102 0.75

Panel B: 16 Developed Equity Market Portfolios - 02/1973 to 12/2012
CAPM 0.65 84.40 10.09 86.22 20.32 0.221 0.48
FF3 0.76 72.61 12.22 72.88 12.68 0.222 0.49
FF3 + Momentum 0.94 52.50 13.24 65.54 14.55 0.227 0.49
A-CAPM 0.52 93.50 9.17 90.61 13.17 0.211 0.53
CAPM + rIA 0.61 87.43 9.93 87.00 16.40 0.207 0.54
GA-CAPM 0.49 95.05 8.80 92.15 10.48 0.196 0.59

Panel C: 7 U.S. Treasury Portfolios Sorted on Maturity - 07/1961 to 12/2012
CAPM 10.72 0.00 90.26 0.00 9.69 0.028 0.84
CAPM + TERM 7.61 0.00 58.25 0.00 5.07 0.023 0.89
A-CAPM 9.58 0.00 79.23 0.00 9.61 0.027 0.86
CAPM + rIA 8.43 0.00 68.91 0.00 4.93 0.019 0.92
GA-CAPM 7.72 0.00 58.16 0.00 5.58 0.017 0.94

Panel D: 5 Currency Forward Portfolios Sorted on Forward Discount - 11/1983 to 12/2012
CAPM 1.95 8.48 8.40 13.55 18.75 0.147 0.04
CAPM + HMLFX 0.55 74.08 2.62 75.88 12.51 0.139 0.15
A-CAPM 1.07 37.69 5.06 40.87 20.30 0.140 0.14
CAPM + rIA 1.81 11.03 7.08 21.45 19.04 0.143 0.09
GA-CAPM 0.72 60.78 2.87 71.98 20.99 0.136 0.19

Panel E: 5 Commodity Futures Portfolios Sorted on Basis - 01/1970 to 12/2012
CAPM 3.37 0.53 13.53 1.89 50.09 0.272 0.03
CAPM + HMLC 1.37 23.50 5.12 40.13 47.90 0.247 0.20
A-CAPM 2.64 2.26 12.06 3.40 34.90 0.204 0.44
CAPM + rIA 3.36 0.54 13.51 1.90 50.05 0.256 0.14
GA-CAPM 2.63 2.30 12.03 3.44 34.35 0.172 0.55

Table 7 Time Series Regressions
For all asset classes, I report summary statistics for time series regressions of test portfolio excess returns
on a constant and a set of factors (Equation (19)). The market portfolio for U.S. equity, currency forward,
and commodity futures portfolios is the CRSP value-weighted market portfolio. The market portfolio for
international equity portfolios is the value-weighted portfolio with all country indices. The market portfolio
for U.S. Treasury indices is the value-weighted portfolio of all Treasury issues. In each panel, I report the
Gibbons et al. (1989) (GRS) test statistics and the χ2 test statistics for the null hypothesis of zero pricing
errors as well as their p-values, the average absolute pricing error, the average standard error of the intercept
coefficients, and the average of time series regression R2s. CAPM includes only the market portfolio rm as
a factor. FF3 adds the small-minus-big and high-minus-low book-to-market factors, and FF3+Momentum
adds the winner-minus-loser factor to FF3. TERM is the difference in monthly returns between the 10-year
and 1-year Treasury bond. HMLFX (HMLC) is a rank-based factor which is long high forward discount
(basis) and short low forward discount (basis) quintile portfolios of currency forwards (commodity futures).
A-CAPM refers to the model with rm and the systematic asymmetry risk factor r̃SA, CAPM+rIA uses rm
and the idiosyncratic asymmetry risk factor rIA. Finally, GA-CAPM refers to the model with rm, r̃SA, and
rIA.
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GRS p-value χ2 p-value Average Average Average
Model Statistic (%) Statistic (%) |α| (bps) σα (bps) R2

Panel A: 25 U.S. Equity Portfolios Sorted on Size and Momentum - 07/1961 to 12/2012
CAPM 5.30 0.00 126.54 0.00 33.93 0.123 0.74
FF3 4.94 0.00 154.63 0.00 33.32 0.095 0.85
FF3 + Momentum 3.70 0.00 95.65 0.00 12.83 0.072 0.91
A-CAPM 4.92 0.00 113.70 0.00 24.72 0.115 0.78
CAPM + rIA 5.10 0.00 104.96 0.00 34.99 0.095 0.84
GA-CAPM 4.71 0.00 99.83 0.00 25.73 0.085 0.87

Panel B: 5 Developed Equity Market Portfolios Sorted on Momentum - 02/1973 to 12/2012
CAPM 3.71 0.27 21.56 0.06 26.21 0.163 0.61
FF3 3.37 0.53 20.61 0.10 26.75 0.165 0.62
FF3 + Momentum 2.58 2.56 15.87 0.72 21.06 0.168 0.62
A-CAPM 2.28 4.61 12.86 2.47 17.12 0.136 0.73
CAPM + rIA 2.68 2.11 15.87 0.72 14.91 0.137 0.72
GA-CAPM 2.27 4.68 12.80 2.53 16.78 0.118 0.79

Panel C: 3 U.S. Treasury Portfolios Sorted on Momentum - 01/1962 to 12/2012
CAPM 13.83 0.00 53.60 0.00 8.68 0.042 0.74
CAPM + TERM 7.26 0.01 20.12 0.02 5.08 0.041 0.75
A-CAPM 8.08 0.00 27.29 0.00 9.88 0.030 0.86
CAPM + rIA 13.68 0.00 53.12 0.00 8.78 0.026 0.88
GA-CAPM 7.75 0.00 24.57 0.00 8.25 0.017 0.96

Panel D: 5 Currency Forward Portfolios Sorted on Momentum - 11/1984 to 12/2012
CAPM 1.51 18.54 7.13 21.14 25.48 0.153 0.04
CAPM + HMLFX 1.38 23.11 5.97 30.87 19.83 0.152 0.07
A-CAPM 1.48 19.45 7.07 21.55 25.59 0.149 0.08
CAPM + rIA 1.06 38.03 4.53 47.56 25.71 0.144 0.15
GA-CAPM 0.98 42.84 4.05 54.28 25.92 0.141 0.19

Panel E: 5 Commodity Futures Portfolios Sorted on Momentum - 01/1970 to 12/2012
CAPM 4.60 0.04 21.52 0.06 58.27 0.277 0.03
CAPM + HMLC 3.12 0.88 11.95 3.55 50.55 0.274 0.06
A-CAPM 3.40 0.49 17.67 0.34 46.79 0.209 0.44
CAPM + rIA 2.87 1.44 13.45 1.95 48.98 0.258 0.17
GA-CAPM 1.21 30.12 6.49 26.12 25.00 0.180 0.60

Table 8 Time Series Regressions For Momentum Sorted Portfolios
For all asset classes, I report summary statistics for time series regressions of momentum sorted test portfolio
excess returns on a constant and a set of factors (Equation (19)). The market portfolio for U.S. equity,
currency forward, and commodity futures portfolios is the CRSP value-weighted market portfolio. The
market portfolio for international equity portfolios is the value-weighted portfolio with all country indices.
The market portfolio for U.S. Treasury indices is the value-weighted portfolio of all Treasury issues. In
each panel, I report the Gibbons et al. (1989) (GRS) test statistics and the χ2 test statistics for the null
hypothesis of zero pricing errors as well as their p-values, the average absolute pricing error, the average
standard error of the intercept coefficients, and the average of time series regression R2s. CAPM includes
only the market portfolio rm as a factor. FF3 adds the small-minus-big and high-minus-low book-to-market
factors, and FF3+Momentum adds the winner-minus-loser factor to FF3. TERM is the difference in monthly
returns between the 10-year and 1-year Treasury bond. HMLFX (HMLC) is a rank-based factor which is
long high forward discount (basis) and short low forward discount (basis) quintile portfolios of currency
forwards (commodity futures). A-CAPM refers to the model with rm and the systematic asymmetry risk
factor r̃SA, CAPM+rIA uses rm and the idiosyncratic asymmetry risk factor rIA. Finally, GA-CAPM refers
to the model with rm, r̃SA, and rIA.

54


	Introduction
	Asset Pricing with Return Asymmetries
	Assumptions and notations
	Assumptions on utility functions
	Assumptions on the return distribution
	A model with systematic asymmetry
	Portfolio implications under systematic asymmetry risk
	A model with systematic and idiosyncratic asymmetries

	Empirical Results
	Test portfolios
	Building the risk factors
	Time series regressions

	Conclusion
	Return Distributions
	Moments of inverse gamma variables
	The generalized asymmetric t distribution
	Examples of GAT-distributed returns

	Proof of Proposition 2
	Portfolio Implications
	Data Description

